SIGIR 2021 | 广告系统位置偏差的CTR模型优化方案 (tech.meituan.com)

【简介】

近些年来,由于人工智能技术的高速发展,所带来的公平性问题也愈发受到关注。同样的,广告技术也存在着许多公平性问题,由于公平性问题造成的偏差对广告系统的生态会产生较大的负面影响。广告系统通过累积的用户交互反馈数据基于一定的假设去训练模型,模型对广告进行预估排序展示给用户,用户基于可看到的广告进行交互进而累积到数据中。在该环路中,位置偏差、流行度偏差等各种不同类型的偏差会在各环节中不断累积,最终导致广告系统的生态不断恶化,形成“强者愈强、弱者愈弱”的马太效应。

由于偏差对广告系统和推荐系统的生态有着极大的影响,针对消除偏差的研究工作也在不断增加。比如国际信息检索会议SIGIR在2018年和2020年组织了一些关注于消除偏差主题的专门会议,同时也给一些基于偏差和公平性的论文颁发了最佳论文奖(Best Paper)。KDD Cup 2020的其中一个赛道也基于电子商务推荐中的流行度偏差进行开展。

点击查看原文 >>

@技术头条 2021-06-13 22:45 / 0个评论
赞过的人: @IT技术博客大学习
要不要再学学下面的文章?
Go中秘而不宣的数据结构 CacheLinePad:精细化优化 (colobu.com)
这篇文章深入解析了 Go 语言中的 CacheLine 数据结构,详细探讨了其在多核环境下的内存对齐、伪共享问题以及性能优化方法。通过具体的代码示例和实验分析,文章展示了如何利用 CacheLine 提升并发程序的性能。内容专业且实用,对开发高性能 Go 应用的工程师有很高的参考价值,值得推荐阅读和分享。
by @技术头条 2025-01-03 00:03 查看详情
Go中秘而不宣的数据结构 BitVec, 资源优化方法之位向量 (colobu.com)
如何深入理解 Go 的内部数据结构?文章以 BitVec 为例,详细解析了其设计原理、实现方式以及在不同场景中的应用,还探讨了相关的性能优化策略和工程实践。这是一篇高质量的技术解读,为开发者学习 Go 的底层实现提供了宝贵的参考!
by @技术头条 2025-01-02 23:59 查看详情
ThinkPad + Redis:构建亿级数据毫秒级查询的平民方案 (soulteary.com)
如何用普通设备实现海量数据的毫秒级查询?文章分享了在 ThinkPad 上构建 Redis 系统的完整方案,详细解析了数据分片、查询优化和资源调配等关键技术,还提供了针对高效查询的实际案例。轻量化实现,高性能表现,为开发者提供了实用的参考思路,值得深入学习!
by @技术头条 2025-01-02 23:58 查看详情
温故而知新:后端通用查询方案的再思考 (blog.yuanpei.me)
本文探讨了后端通用查询方案的设计,通过 `Gridify` 库启发,提出基于泛型和接口的查询模型,优化分页和过滤功能。实现细节包括 `QueryParameter` 类和 `IQueryableFilter` 接口的使用,自定义模型绑定方式,使查询参数更灵活,支持多种前后端兼容格式。文章强调开发中平衡灵活性与规范性,并认为在 AI 辅助编程背景下,程序员应专注于复杂问题解决和生产关系的改善。
by @技术头条 2024-11-02 16:39 查看详情
搜索广告召回技术在美团的实践 (tech.meituan.com)
美团通过生成式关键词召回和多模态向量检索技术,大幅提升了搜索广告的召回效率。本文详细介绍了生成式大模型在广告召回中的实践,特别是结合扩散模型的多模态优化,适合关注广告技术和 AI 应用的读者。
by @技术头条 2024-09-09 23:47 查看详情
图解Blink-Tree:B+Tree的一种并发优化结构和算法 (www.codedump.info)
本文介绍了 Blink-Tree,这是一种 B+Tree 的并发优化结构。通过引入 high key 和 link 指针,解决了并发访问时的性能问题,特别适用于高并发环境的存储引擎优化。如果你对数据库存储引擎感兴趣,这篇文章不容错过!
by @技术头条 2024-09-09 23:46 查看详情
信息流广告预估技术在美团外卖的实践 (tech.meituan.com)
信息流广告的精准预估技术是提升外卖业务广告效果的关键。美团外卖通过深度模型优化,实现了从用户行为建模到长短期兴趣匹配的全面升级,提升广告点击率。本文详细解析了信息流广告背后的技术架构和实践经验,适合所有关注广告优化的技术爱好者。想了解美团如何高效提升广告预估准确率吗?
by @技术头条 2024-09-08 23:29 查看详情
【大模型系列】指令微调 (hubojing.github.io)
本文总结了大模型中的指令微调(Instruction Tuning)技术,重点介绍了如何通过指令化数据对大语言模型进行参数微调以提升任务性能。文章探讨了数据构建方法如Self-Instruct和Evol-Instruct,以及微调策略包括优化设置和高效微调方法。通过这些技术,模型可以在多任务场景中表现出色。此内容对希望提升大语言模型能力的研究者和开发者具有参考价值。
by @技术头条 2024-08-06 08:12 查看详情
【大模型系列】提示学习 (hubojing.github.io)
本文介绍了提示学习(Prompt Learning)的基础概念和应用场景。作者详细讨论了提示学习在大语言模型中的作用,以及如何通过优化提示来提高模型的任务表现。文章还分享了在实际应用中调整和设计提示的技巧,并探讨了该技术在自然语言处理中的未来发展趋势。这篇文章为希望利用大模型进行高效自然语言处理的开发者提供了有价值的见解。
by @技术头条 2024-08-06 08:11 查看详情
使用 OpenRewrite 优化代码 (www.diguage.com)
本文介绍了如何使用OpenRewrite工具优化Java代码。OpenRewrite可以通过自动化脚本进行代码重构,减少技术债务,提升代码质量。作者详细讲解了如何配置Maven插件,并使用多种重构“处方”,例如排序import语句、升级到Java 21、替换Base64实现,以及迁移到Spring Boot 3.2和JUnit 5。通过这些工具和方法,开发者可以简化代码维护和升级流程。
by @技术头条 2024-08-06 08:04 查看详情