【简介】
本文旨在尝试使用 llama.cpp 在本地部署 AI 大模型,随着人工智能的快速发展,我们逐渐认识到私有化部署的重要性和潜力。在此背景下,llama.cpp 作为一个纯 C/C++ 实现的 LLaMA 模型推理工具,提供了在本地环境下高性能的 AI 推理能力。在这篇文章中,我们可以了解到 llama.cpp 具有在 GPU 和 CPU 环境下运行的灵活性,满足私有化部署的需求。文章详细介绍了 llama.cpp 编译和部署的过程,为读者提供了一份在本地部署 AI 大模型的教程。私有化部署的 AI 大模型,相比于 ChatGPT 这类通用大模型,更注重数据隐私和安全性,对云服务的依赖更少,可以做到更好的本地化控制。虽然编译 llama.cpp 有一定的复杂性,AI 大模型的下载、转化、量化需要一定的耐心,可当本地的 AI 应用运行起来的那一刻,博主觉得这一切完全值得。