随着PHP7.4而来的有一个我认为非常有用的一个扩展:PHP FFI(Foreign Function interface), 引用一段PHP FFI RFC中的一段描述:For PHP, FFI opens a way to write PHP extensions and bindings to C libraries in pure PHP.
在本文中,我将向你展示如何编写一个 C++ 扩展模块。使用 C++ 而不是 C,因为大多数编译器通常都能理解这两种语言。我必须提前说明缺点:以这种方式构建的 Python 模块不能移植到其他解释器中。它们只与 CPython 解释器配合工作。因此,如果你正在寻找一种可移植性更好的与 C 语言模块交互的方式,考虑下使用 ctypes 模块。
在自然语言处理和知识图谱中,实体抽取、NER是一个基本任务,也是产业化应用NLP 和知识图谱的关键技术之一。BERT是一个大规模预训练模型,它通过精心设计的掩码语言模型(Masked Language Model,MLM)来模拟人类对语言的认知,并对数十亿个词所组成的语料进行预训练而形成强大的基础语义,形成了效果卓绝的模型。通过 BERT来进行实体抽取、NER的方法是当前在NLP和知识图谱的产业化应用中最常用的方法,是效果与成本权衡下的最佳选择。本文详细讲解使用BERT来进行实体抽取,看完本文就会用当前工业界最佳的模型了。
在上一篇文章[《聊聊来自元宇宙大厂 Meta 的相似度检索技术 Faiss》]中,我们有聊到如何快速入门向量检索技术,借助 Meta AI(Facebook Research)出品的 faiss 实现“最基础的文本内容相似度检索工具”,初步接触到了“语义检索”这种对于传统文本检索方式具备“降维打击”的新兴技术手段。有朋友在聊天中提到,希望能够聊点更具体的,比如基于向量技术实现的语义检索到底比传统文本检索强多少,以及是否有局限性,能不能和市场上大家熟悉的技术产品进行一个简单对比。那么,本篇文章就试着从这个角度来聊聊。
在 Go 1.19 的开发中, string.SliceHeader和string.StringHeader经历了一个生死存亡的争斗,这两个类型一度被标记为弃用(deprecated),但是这两个类型经常用在 slice of byte 和 string 高效互转的场景中,如果被标记为弃用,但是目前还没有可替代的方法,所以这两个类型又把弃用标记去掉了,如无意外,它们也会在 Go 1.20 再次被标记为弃用。