持续定义SaaS模式云数据仓库+AI (developer.aliyun.com)

【简介】

本文由阿里云计算平台事业部 MaxCompute 产品经理孟硕为大家带来《持续定义SaaS模式云数据仓库+AI》的相关分享。

点击查看原文 >>

@可耐芊小仙女 2020-10-29 11:11 / 0个评论
要不要再学学下面的文章?
AWS运维部署实践--使用sigma自建镜像仓库代替ECR (wiki.eryajf.net)
本文介绍了如何使用 `sigma` 替代 AWS 的 ECR 作为轻量级的镜像仓库解决方案。通过配置 `s3` 存储、端口监听等设置,实现了低资源占用下的高效镜像管理。文章详细提供了 `config.yaml` 文件的配置方案,以及 `sigma` 部署的具体步骤,适合在自建环境中替代 ECR 进行镜像管理。
by @技术头条 2024-11-02 17:03 查看详情
Hive SQL如何找出连续日期数据之间的较大波动 (ixyzero.com)
本文介绍了在 Hive SQL 中如何识别连续日期数据的显著波动,适用于异常检测。使用窗口函数 `LAG` 和 `LEAD` 提取前后日期数据,通过对比当天与昨日、近几日的均值或分位数来判定异常。文中提供了查询示例,通过阈值设定(如倍数增加或p90分位数)识别异常值,帮助分析用户行为或数据波动,为风控和数据监控提供技术支持。
by @技术头条 2024-11-02 16:52 查看详情
新一代实验分析引擎:驱动履约平台的数据决策 (tech.meituan.com)
本文介绍了美团履约技术平台的新一代实验分析引擎,该引擎对核心实验框架进行了标准化,并融合了众多先进解决方案,有效解决小样本挑战。同时,提供了多样化的溢出效应应对策略,并针对不同业务场景提供了精准的方差和P值计算方法,以规避统计误差。希望对大家有所帮助或启发。
by @技术头条 2024-11-02 16:18 查看详情
命令分发模式 (colobu.com)
文章介绍了命令调度器模式(Command Dispatcher Pattern)的应用,该模式能将命令和其对应的处理逻辑分离,提升代码的可扩展性和可维护性。作者展示了如何在项目中使用Rust实现这种设计模式,包括如何将不同的命令注册到调度器,并动态调用相应的命令处理程序。文章提供了具体的代码示例,帮助读者理解如何在实践中应用该模式来简化复杂的业务逻辑。
by @技术头条 2024-08-06 07:54 查看详情
让AI 实现一个红黑树 (colobu.com)
文章探讨了使用AI帮助实现红黑树数据结构的过程。作者尝试使用多种AI工具模拟专家(如Rob Pike)实现红黑树,并进行了代码优化、单元测试和Fuzz测试。过程中发现AI生成的代码存在问题,但通过不断调整和AI协作,最终实现了功能完善的红黑树实现。文章强调AI在代码生成、测试和优化方面的潜力与不足。
by @技术头条 2024-08-06 07:52 查看详情
基于 LLaMA 和 LangChain 实践本地 AI 知识库 (blog.yuanpei.me)
通用人工智能,即:AGI(Artificial General Intelligence)的实现,正在以肉眼可见的速度被缩短,以前在科幻电影中看到的种种场景,或许会比我们想象中来得更快一些。不过,等待 AGI 来临前的黑夜注定是漫长而孤寂的。在此期间,我们继续来探索 AI 应用落地的最佳实践,即:在成功部署本地 AI 大模型后,如何通过外挂知识库的方式为其 “注入” 新的知识。
by @技术头条 2024-03-13 13:12 查看详情
防止数据泄露的高效策略-翻译整理 (ixyzero.com)
简单来说,就是数据安全左移,在每一个阶段都做卡点和检测,提高入侵/获取敏感数据的成本,减少后续阶段的日志告警量,提高告警检测准确率,利用自动化工具/平台提高响应的速度和效率。
未授权不可访问;有账号凭证要检测是否正常(常用设备、常用网络、常见时间、常见操作行为、……);有账号也仅知其所需最小权限;梳理出的高权限账号的敏感操作进行重点关注。
数据尽量不落地,大部分操作在线即可完成,系统埋点要全面和准确;对于数据下载和外发格外关注,下载设备的DLP的健康状态和策略的有效性需要及时检查。
by @技术头条 2024-03-12 22:56 查看详情
基于接口数据变异的App健壮性测试实践 (tech.meituan.com)
本文主要介绍了对网络返回数据进行变异的客户端健壮性测试实践经验。文章第一部分介绍客户端健壮性测试的基本概念;第二部分分享了基于接口返回数据变异的App健壮性测试方案设计的思路;第三部分主要解读了变异数据的构造和异常检测方案设计;第四部分介绍了精简变异数据的探索方案。
by @技术头条 2024-03-12 22:45 查看详情
个人数据安全不完全指南 (thiscute.world)
这里介绍的并不是什么能一蹴而就获得超高安全性的傻瓜式方案,它需要你需要你有一定的技术背景跟时间投入,是一个长期的学习、实践与方案迭代的过程。另外如果你错误地使用了本文中介绍的工具或方案,可能反而会降低你的数据安全性,由此产生的任何损失与风险皆由你自己承担。
by @技术头条 2024-03-12 22:32 查看详情
使用 llama.cpp 在本地部署 AI 大模型的一次尝试 (blog.yuanpei.me)
本文旨在尝试使用 llama.cpp 在本地部署 AI 大模型,随着人工智能的快速发展,我们逐渐认识到私有化部署的重要性和潜力。在此背景下,llama.cpp 作为一个纯 C/C++ 实现的 LLaMA 模型推理工具,提供了在本地环境下高性能的 AI 推理能力。在这篇文章中,我们可以了解到 llama.cpp 具有在 GPU 和 CPU 环境下运行的灵活性,满足私有化部署的需求。文章详细介绍了 llama.cpp 编译和部署的过程,为读者提供了一份在本地部署 AI 大模型的教程。私有化部署的 AI 大模型,相比于 ChatGPT 这类通用大模型,更注重数据隐私和安全性,对云服务的依赖更少,可以做到更好的本地化控制。虽然编译 llama.cpp 有一定的复杂性,AI 大模型的下载、转化、量化需要一定的耐心,可当本地的 AI 应用运行起来的那一刻,博主觉得这一切完全值得。
by @技术头条 2024-03-12 22:29 查看详情