技术头条 - 一个快速在微博传播文章的方式     搜索本站
您现在的位置首页 --> 系统架构 --> Dump Plugin并行化实践

Dump Plugin并行化实践

浏览:875次  出处信息

    先简单介绍下Dump Plugin的由来,在搜索Dump中心服务化的项目中,我们把Dump中心的增量数据产出分为2个阶段,Loader阶段和Join阶段,Loader阶段把数据准备成Key-Values形式,Join阶段将数据取出,计算各种业务逻辑并产出最终数据。业务逻辑的计算是相当繁琐且易出错,这类事情做一遍足以,所以设计了一个接口,按照业务自身划分成一个个小块逻辑实现接口。这些个小业务逻辑模块即构成Dump的业务Plugin。

     这样做的好处:

     1,  按业务本身划分,结构相对清晰,容易维护。

     2,  架构和业务通过接口交互,重构架构将尽可能少的影响业务代码

     3,  每个业务模块的耗时能准确统计出并能做针对性的优化。

    在最初的版本中,先根据依赖关系计算好plugin的执行顺序,然后顺序执行,是一个串行的过程,如下图:

    

    此种方式,计算耗时与业务的复杂程度成正比。而目前Dump中心已经有十几个个业务逻辑Plugin,并且plugin之间有复杂的依赖关系。所以我们尝试用更高效的并发方式去运行这些plugin。这个项目用的开发语言是Java,Java的多线程有多种成熟的设计模式,结合现有框架,我们设计了两种方案并分别尝试。

    方案1,以单条数据为粒度,在一条数据的运行内部实现并行化,如下图:

    

    简单的来说,就是起一个工作线程组来运行plugin,来一条数据后,工作线程根据依赖关系获取当前可运行的plugin,当所有plugin都运行完毕后,输出数据。类似于Work Thread模式,工作线程没数据就等着,来了数据就做。主要代码流程如下:

public class Main {
 private Semaphore mainSemaphore, workSemaphore;
 private Data data;
 private int workThreadNum;

 public Data run(Data data) {
   this.data = data;
   workSemaphore.release(workThreadNum);
   mainSemaphore.acquire(workThreadNum);
   return this.data;
 }

 class WorkThread implements Runnable {
 private boolean loop = true;
 public void run() {
   while(loop) {
     workSemaphore.acquire();
     //getValidPlugin: 一个synchronized的调用,获得未运行的Plguin
     Plugin plugin = getValidPlugin();
     if(plugin != null)
       plugin.run(data);
     else
       mainSemaphore.release(1);
     }
   }
 }
}

    代码中使用两个Semaphore信号量来同步主线程和工作线程,每条数据都需要激活和同步,并有一个synchronized的方法来获取当前可运行的Plugin,线程同步开销比较大。实现过程中,采用重任务优先,预先计算等方法,降低并行额外引入的开销。在单个Plugin耗时长,关键路径和非关键路径上的plugin耗时相差不大的情况下,此种方案效果不错。但在目前的业务情况下,效果提升不明显,实测约提升了10%。

    通过分析plugin的依赖关系,发现目前业务逻辑下,有两个耗时大的plugin均是关键路径上的,方案1的并行是针对单个宝贝的,我们想能否在批量数据或数据流中实现数据维度的并行。数据维度的并行,最简单的方案是将数据逐条扔给ThreadPoolExecutor,每个线程串行执行,但这种方案对于现有结构来说不合适,原因是plugin的代码无法保证线程安全,于是就有了方案2,如下图:

    

    每个Plugin都起一个工作线程,数据像流水线一样从Plugin中间流过,plugin的依赖关系决定数据的流向,类似于Guarded Suspension模式,工作线程维护一个Queue来缓存,等plugin准备好,就从Queue中取数据处理。主要代码流程如下:

public interface QueuePutter {
 public void put(Data data);
}

public class Main implements QueuePutter{
 private BlockingQueue resultQueue = new LinkedBlockingQueue();

 public List run(List dataList) {
   List resultList = new ArrayList();
   for(Data data : dataList) {
     firstPluginThread.put(data);
   }
   putLastData();
   while(true) {
     Data data = resultQueue.take();
     if(isLastData(data)) break;
     resultList.add(data);
   }
   return resultList;
 }

 public void put(Data data) {
   this.resultQueue.put(data);
 }
}

public class PluginThread implements Runnable,QueuePutter {
   private Plugin plugin = null;
   private PluginThread nextPluginThread = null;
   private boolean loop = true;
   private BlockingQueue queue = new LinkedBlockingQueue(10);

   public PluginThread(Plugin plugin, QueuePutter next) {
     this.plugin = plugin;
     this.nextPluginThread = next;
   }

   public void run() {
     while(loop) {
       Data data = this.queue.take();
       data = this.plugin.run(data);
       this.nextPluginThread.put(data);
     }
   }

   public void put(Data data) {
     this.queue.put(data);
   }
 }

    代码中同步操作通过BlockingQueue来实现。主线程将数据分发给第一个plugin线程,而最后一个plugin线程负责将数据写回给主线程。主线程用一条特殊的数据来标识这组数据的结尾,而后在主线程队列里一直扫描特殊数据,FIFO队列保证了处理的时序。逻辑上来说,方案2的单条数据的处理还是串行,而是多条数据之间的并行,整体性能只取决于最慢的Plugin的耗时,实测中对于批量数据来说,效果要好于方案1。

    总结:实践Dump Plugin并行的两种实现方式,对单数据的列并行和对批量数据/数据流的行并行。

QQ技术交流群:445447336,欢迎加入!
扫一扫订阅我的微信号:IT技术博客大学习
<< 前一篇:基础设施之殇
后一篇:Skynet 设计综述 >>
© 2009 - 2024 by blogread.cn 微博:@IT技术博客大学习

京ICP备15002552号-1