技术头条 - 一个快速在微博传播文章的方式     搜索本站
您现在的位置首页 --> 算法 --> Java Worker 设计模式

Java Worker 设计模式

浏览:2411次  出处信息

Worker模式

想解决的问题

异步执行一些任务,有返回或无返回结果

使用动机

有些时候想执行一些异步任务,如异步网络通信、daemon任务,但又不想去管理这任务的生命周。这个时候可以使用Worker模式,它会帮您管理与执行任务,并能非常方便地获取结果

结构

很多人可能为觉得这与executor很像,但executor是多线程的,它的作用更像是一个规划中心。而Worker则只是个搬运工,它自己本身只有一个线程的。每个worker有自己的任务处理逻辑,为了实现这个目的,有两种方式

    1. 建立一个抽象的AbstractWorker,不同逻辑的worker对其进行不同的实现;

    2. 对worker新增一个TaskProcessor不同的任务传入不同的processor即可。

第二种方式worker的角色可以很方便地改变,而且可以随时更换processor,可以理解成可”刷机”的worker

     ^ ^。这里我们使用第二种方式来介绍此模式的整体结构。

针对上图,详细介绍一下几个角色:

  • ConfigurableWorker:顾名思义这个就是真正干活的worker了。要实现自我生命周期管理,需要实现Runable,这样其才能以单独的线程运行,需要注意的是work最好以daemon线程的方式运行。worker里面还包括几个其它成员:taskQueue,一个阻塞性质的queue,一般BlockingArrayList就可以了,这样任务是FIFO(先进先出)的,如果要考虑任务的优先级,则可以考虑使用PriorityBlockingQueue;listeners,根据事件进行划分的事件监听者,以便于当一个任务完成的时候进行处理,需要注意的是,为了较高效地进行listener遍历,这里我推荐使用CopyOnWriteArrayList,免得每次都复制。其对应的方法有addlistener、addTask等配套方法,这个都不多说了,更详细的可以看后面的示例代码。
  • WorkerTask:实际上这是一个抽象的工内容,其包括基本的id与,task的ID是Worker生成的,相当于递wtte后的一个执回,当数据执行完了的时候需要使用这个id来取结果。而后面真正实现的实体task则包含任务处理时需要的数据。
  • Processor:为了实现可”刷机”的worker,我们将处理逻辑与worker分开来,processor的本职工作很简单,只需要加工传入的task数据即可,加工完成后触发fireEvent(WorkerEvent.TASK_COMPLETE)事件,之后通过Future的get即可得到最终的数据。
  • 另外再说一点,对于addTask,可以有一个overload的方法,即在输入task的同时,传入一个RejectPolice,这样可以在size过大的时候做出拒绝操作,有效避免被撑死。

    适用性/问题

    这种设计能自动处理任务,并能根据任务的优先级自动调节任务的执行顺序,一个完全独立的thread,你完全可以将其理解成一专门负责干某种活的”机器人”。它可以用于处理一些定时、请求量固定均匀且对实时性要求不是太高的任务,如日志记录,数据分析等。当然,如果想提高任务处理的数据,可以生成多个worker,就相当于雇佣更多的人来为你干活,非常直观的。当然这样一来,谁来维护这worker便成了一个问题,另外就目前这种设计下worker之间是没有通信与协同的,这些都是改进点。

    那么对于多个worker,有什么组织方式呢?这里我介绍三种,算是抛砖引玉:

    流水线式worker(assembly-line worker)

    就像生产车间上的流水线工人一样,将任务切分成几个小块,每个worker负责自己的一部分,以提高整体的生产、产出效率,如下图:

        

    假设完成任务 t 需要的时间为:W(t)=n,那么将任务分解成m份,流水线式的执行,每小份需要的时间便为 W(t/m)=n/m,那么执行1000条任务的时间,单个为1000n,流水线长度为L,则用这种方式所用的时间为(1000-1)*(m-L+1)*n/m+n

         其中L

    多级反馈队列(Multilevel Feedback Queue)

        这是一个有Q1、Q2…Qn个多重流水线方式,从高到低分别代码不同的优先级,高优先级的worker要多于低优先级的,一般是2的倍数,即Q4有16个worker、Q3有8个,后面类推。任务根据预先估计好的优先级进入,如果任务在某步的执行过长,直接踢到下一级,让出最快的资源。如下图所示:

        

    显然这种方式的好处就在于可以动态地调整任务的优级,及时做出反应。当然,为了实现更好的高度,我们可以在低级里增加一个阀值,使得放偶然放入低级的task可以有复活的机会^

         ^。

    MapReduce式

        流水线虽然有一定的并行性,但总体来说仍然是串行的,因为只要有一个节点出了问题,那都是致命的错误。MapReduce是Google率先实现的一个分布式算法,有非常好的并行执行效率。

        

        如上图所示,只要我们将Map与Reduce都改成Worker就行了,如MapWorker与ReduceWorker。这样,可以看见,Map的过程是完全并行的,当然这样就需要在Map与Reduce上的分配与数据组合上稍稍下一点功夫了。

    样例实现

        这里我们实现一个PageURLMiningWorker,对给定的URL,打开页面后,采取所有的URL,并反回结果进行汇总输出。由于时间有限,这里我只实现了单worker与MapReduce worker集两种方式,有兴趣的同学可以实现其它类型,如多级反馈队列。注意!我这里只是向大家展示这种设计模式,URL

         抓取的效率不在本次考虑之列。

        所有的代码可以在这里获取:https://github.com/sefler1987/javaworker

    单Worker实现样例

  • package com.alibaba.taobao.main;
  • import java.util.Arrays;
  • import java.util.List;
  • import java.util.concurrent.ConcurrentHashMap;
  • import java.util.concurrent.ConcurrentSkipListSet;
  • import java.util.concurrent.TimeUnit;
  • import com.alibaba.taobao.worker.ConfigurableWorker;
  • import com.alibaba.taobao.worker.SimpleURLComparator;
  • import com.alibaba.taobao.worker.WorkerEvent;
  • import com.alibaba.taobao.worker.WorkerListener;
  • import com.alibaba.taobao.worker.WorkerTask;
  • import com.alibaba.taobao.worker.linear.PageURLMiningProcessor;
  • import com.alibaba.taobao.worker.linear.PageURLMiningTask;
  • /**
  •  * Linear version of page URL mining. It’s slow but simple.
  •  * Average time cost for 1000 URLs is: 3800ms
  •  *
  •  * @author xuanyin.zy E-mail:xuanyin.zy@taobao.com
  •  * @since Sep 16, 2012 5:35:40 PM
  •  */
  • public class LinearURLMiningMain implements WorkerListener {
  •     private static final String EMPTY_STRING = ”";
  •     private static final int URL_SIZE_TO_MINE = 10000;
  •     private static ConcurrentHashMap> taskID2TaskMap = new ConcurrentHashMap>();
  •     private static ConcurrentSkipListSet foundURLs = new ConcurrentSkipListSet(new SimpleURLComparator());
  •     public static void main(String[] args) throws InterruptedException {
  •         long startTime = System.currentTimeMillis();
  •         ConfigurableWorker worker = new ConfigurableWorker(“W001″);
  •         worker.setTaskProcessor(new PageURLMiningProcessor());
  •         addTask2Worker(worker, new PageURLMiningTask(“http://www.taobao.com”));
  •         addTask2Worker(worker, new PageURLMiningTask(“http://www.xinhuanet.com”));
  •         addTask2Worker(worker, new PageURLMiningTask(“http://www.zol.com.cn”));
  •         addTask2Worker(worker, new PageURLMiningTask(“http://www.163.com”));
  •         LinearURLMiningMain mainListener = new LinearURLMiningMain();
  •         worker.addListener(mainListener);
  •         worker.start();
  •         String targetURL = EMPTY_STRING;
  •         while (foundURLs.size() < URL_SIZE_TO_MINE) {
  •             targetURL = foundURLs.pollFirst();
  •             if (targetURL == null) {
  •                 TimeUnit.MILLISECONDS.sleep(50);
  •                 continue;
  •             }
  •             PageURLMiningTask task = new PageURLMiningTask(targetURL);
  •             taskID2TaskMap.putIfAbsent(worker.addTask(task), task);
  •             TimeUnit.MILLISECONDS.sleep(100);
  •         }
  •         worker.stop();
  •         for (String string : foundURLs) {
  •             System.out.println(string);
  •         }
  •         System.out.println(“Time Cost: ” + (System.currentTimeMillis() - startTime) + ”ms”);
  •     }
  •     private static void addTask2Worker(ConfigurableWorker mapWorker_1, PageURLMiningTask task) {
  •         String taskID = mapWorker_1.addTask(task);
  •         taskID2TaskMap.put(taskID, task);
  •     }
  •     @Override
  •     public List intrests() {
  •         return Arrays.asList(WorkerEvent.TASK_COMPLETE, WorkerEvent.TASK_FAILED);
  •     }
  •     @Override
  •     public void onEvent(WorkerEvent event, Object… args) {
  •         if (WorkerEvent.TASK_FAILED == event) {
  •             System.err.println(“Error while extracting URLs”);
  •             return;
  •         }
  •         if (WorkerEvent.TASK_COMPLETE != event)
  •             return;
  •         PageURLMiningTask task = (PageURLMiningTask) args[0];
  •         if (!taskID2TaskMap.containsKey(task.getTaskID()))
  •             return;
  •         foundURLs.addAll(task.getMinedURLs());
  •         System.out.println(“Found URL size: ” + foundURLs.size());
  •         taskID2TaskMap.remove(task.getTaskID());
  •     }
  • }
  • MapReduce实现样例

  • package com.alibaba.taobao.main;
  • import java.util.ArrayList;
  • import java.util.Arrays;
  • import java.util.List;
  • import java.util.concurrent.ConcurrentHashMap;
  • import java.util.concurrent.ConcurrentSkipListSet;
  • import java.util.concurrent.TimeUnit;
  • import com.alibaba.taobao.worker.ConfigurableWorker;
  • import com.alibaba.taobao.worker.SimpleURLComparator;
  • import com.alibaba.taobao.worker.WorkerEvent;
  • import com.alibaba.taobao.worker.WorkerListener;
  • import com.alibaba.taobao.worker.WorkerTask;
  • import com.alibaba.taobao.worker.mapreduce.Map2ReduceConnector;
  • import com.alibaba.taobao.worker.mapreduce.MapReducePageURLMiningTask;
  • import com.alibaba.taobao.worker.mapreduce.PageContentFetchProcessor;
  • import com.alibaba.taobao.worker.mapreduce.URLMatchingProcessor;
  • /**
  •  * MapReduce version of page URL mining. It’s very powerful.
  •  *
  •  * @author xuanyin.zy E-mail:xuanyin.zy@taobao.com
  •  * @since Sep 16, 2012 5:35:40 PM
  •  */
  • public class MapReduceURLMiningMain implements WorkerListener {
  •     private static final String EMPTY_STRING = ”";
  •     private static final int URL_SIZE_TO_MINE = 10000;
  •     private static ConcurrentHashMap> taskID2TaskMap = new ConcurrentHashMap>();
  •     private static ConcurrentSkipListSet foundURLs = new ConcurrentSkipListSet(new SimpleURLComparator());
  •     public static void main(String[] args) throws InterruptedException {
  •         long startTime = System.currentTimeMillis();
  •         // four mapers
  •         List mappers = new ArrayList(4);
  •         ConfigurableWorker mapWorker_1 = new ConfigurableWorker(“W_M1″);
  •         ConfigurableWorker mapWorker_2 = new ConfigurableWorker(“W_M2″);
  •         ConfigurableWorker mapWorker_3 = new ConfigurableWorker(“W_M3″);
  •         ConfigurableWorker mapWorker_4 = new ConfigurableWorker(“W_M4″);
  •         mapWorker_1.setTaskProcessor(new PageContentFetchProcessor());
  •         mapWorker_2.setTaskProcessor(new PageContentFetchProcessor());
  •         mapWorker_3.setTaskProcessor(new PageContentFetchProcessor());
  •         mapWorker_4.setTaskProcessor(new PageContentFetchProcessor());
  •         mappers.add(mapWorker_1);
  •         mappers.add(mapWorker_2);
  •         mappers.add(mapWorker_3);
  •         mappers.add(mapWorker_4);
  •         // one reducer
  •         ConfigurableWorker reduceWorker_1 = new ConfigurableWorker(“W_R1″);
  •         reduceWorker_1.setTaskProcessor(new URLMatchingProcessor());
  •         // bind reducer to final result class
  •         MapReduceURLMiningMain main = new MapReduceURLMiningMain();
  •         reduceWorker_1.addListener(main);
  •         // initiate tasks
  •         addTask2Worker(mapWorker_1, new MapReducePageURLMiningTask(“http://www.taobao.com”));
  •         addTask2Worker(mapWorker_2, new MapReducePageURLMiningTask(“http://www.xinhuanet.com”));
  •         addTask2Worker(mapWorker_3, new MapReducePageURLMiningTask(“http://www.zol.com.cn”));
  •         addTask2Worker(mapWorker_4, new MapReducePageURLMiningTask(“http://www.sina.com.cn/”));
  •         // bind mapper to reduer
  •         Map2ReduceConnector connector = new Map2ReduceConnector(Arrays.asList(reduceWorker_1));
  •         mapWorker_1.addListener(connector);
  •         mapWorker_2.addListener(connector);
  •         mapWorker_3.addListener(connector);
  •         mapWorker_4.addListener(connector);
  •         // start all
  •         mapWorker_1.start();
  •         mapWorker_2.start();
  •         mapWorker_3.start();
  •         mapWorker_4.start();
  •         reduceWorker_1.start();
  •         String targetURL = EMPTY_STRING;
  •         int lastIndex = 0;
  •         while (foundURLs.size() < URL_SIZE_TO_MINE) {
  •             targetURL = foundURLs.pollFirst();
  •             if (targetURL == null) {
  •                 TimeUnit.MILLISECONDS.sleep(50);
  •                 continue;
  •             }
  •             lastIndex = ++lastIndex % mappers.size();
  •             MapReducePageURLMiningTask task = new MapReducePageURLMiningTask(targetURL);
  •             taskID2TaskMap.putIfAbsent(mappers.get(lastIndex).addTask(task), task);
  •             TimeUnit.MILLISECONDS.sleep(100);
  •         }
  •         // stop all
  •         mapWorker_1.stop();
  •         mapWorker_2.stop();
  •         mapWorker_3.stop();
  •         mapWorker_4.stop();
  •         reduceWorker_1.stop();
  •         for (String string : foundURLs) {
  •             System.out.println(string);
  •         }
  •         System.out.println(“Time Cost: ” + (System.currentTimeMillis() - startTime) + ”ms”);
  •     }
  •     private static void addTask2Worker(ConfigurableWorker mapWorker_1, MapReducePageURLMiningTask task) {
  •         String taskID = mapWorker_1.addTask(task);
  •         taskID2TaskMap.put(taskID, task);
  •     }
  •     @Override
  •     public List intrests() {
  •         return Arrays.asList(WorkerEvent.TASK_COMPLETE, WorkerEvent.TASK_FAILED);
  •     }
  •     @Override
  •     public void onEvent(WorkerEvent event, Object… args) {
  •         if (WorkerEvent.TASK_FAILED == event) {
  •             System.err.println(“Error while extracting URLs”);
  •             return;
  •         }
  •         if (WorkerEvent.TASK_COMPLETE != event)
  •             return;
  •         MapReducePageURLMiningTask task = (MapReducePageURLMiningTask) args[0];
  •         if (!taskID2TaskMap.containsKey(task.getTaskID()))
  •             return;
  •         foundURLs.addAll(task.getMinedURLs());
  •         System.out.println(“Found URL size: ” + foundURLs.size());
  •         taskID2TaskMap.remove(task.getTaskID());
  •     }
  • }
  • 结果对比

    Y轴为抓取X轴URL个数所用的时间

    总结

        我们可以看到,worker模式组合是非常灵活的,它真的就像一个活生生的工人,任你调配。使用worker,我们可以更方便地实现更复杂的结构。

    建议继续学习:

    1. 设计模式原则总结    (阅读:4090)
    2. 自己写的一个轻量级javascript框架的设计模式    (阅读:4039)
    3. Memcache mutex设计模式    (阅读:3762)
    4. 面向对象设计模式的核心法则    (阅读:3180)
    5. 设计模式速查手册-创建型    (阅读:2703)
    6. 网站导航设计模式指南    (阅读:2376)
    7. JavaScript与设计模式    (阅读:1999)
    8. “另类” 设计模式    (阅读:1921)
    9. 从面向对象的设计模式看软件设计    (阅读:1920)
    10. 设计模式-自动完成    (阅读:1786)
    QQ技术交流群:445447336,欢迎加入!
    扫一扫订阅我的微信号:IT技术博客大学习
    © 2009 - 2024 by blogread.cn 微博:@IT技术博客大学习

    京ICP备15002552号-1