技术头条 - 一个快速在微博传播文章的方式     搜索本站
您现在的位置首页 --> Java --> JVM的GC简介和实例

JVM的GC简介和实例

浏览:2703次  出处信息

   本文是一次内部分享中总结了jvm gc的分类和一些实例, 内容是introduction级别的,供初学人士参考.

   成文仓促,难免有些错误,如果有大牛发现,请留言,我一定及时更正,谢谢!

   JVM内存布局主要包含下面几个部分:

  • Java Virtual Machine Stack: 也就是我们常见的局部变量栈,线程私有,保存线程执行的局部变量表、操作栈、动态连接等。

  • Java Heap:我们最常打交道的内存区域,几乎所有对象的实例都在这个区域分配。所谓的GC基本上也就是跟这个区域打交道。

  • Method Area:包含被虚拟机加载的类、常量、静态变量等数据。

  •    Hotspot虚拟机使用分代收集算法,将Java Heap根据对象的存活周期分为多个区域:新生代、老生代和永生代。

       新生代和老生代位于Java heap中,是垃圾收集器主要处理的内存区域。

       永生代则基本上等价于Method Area,也就是说其中包含的数据在jvm进程存活期间会一直存在,一般不会发生变化。

       java堆内存的布局如下图所示:

       jvm堆布局

       使用jstat可以查看某个java进程的内存状况:

    chendeMacBook-Air:~ eleforest$ jstat -gc 16136
     S0C    S1C    S0U    S1U      EC       EU        OC         OU       PC     PU    YGC     YGCT    FGC    FGCT     GCT
    1024.0 1024.0  0.0    0.0    8192.0   2867.9   10240.0      0.0     21248.0 2637.2      0    0.000   0      0.000    0.000

       其中各个指标介绍如下:(单位为KB)

  • S0C,S1C,S0U,S1U: 0/1幸存区(survivor)容量(C:Capacity)/使用量(U:Used)。

  • EC,EU: Eden(伊甸)区容量/用量。Eden和survivor两个区域位于新生代,由于新生代GC一般是使用复制算法进行清理,因此按照复制算法的原理将新生代分成了3个区域:Eden、Survivor0、Survivor1。Hotspot虚拟机的3个空间缺省配比为:8:1:1,jvm只会使用eden和1个survivor作为新生代空间.当新生代空间不足时发生minor gc,此时根据复制算法, jvm会首先 1)将eden和from survivor中存活的对象拷贝到to survior中,然后2)释放eden和from中的所有需要回收对象,最后3)调换from/to survior,jvm将eden和新的from survior作为新生代。当然上述minor gc顺利执行还取决于很多因素,这里只描述了最理想化的状态。

  • OC,OU: Old(老生代)容量/用量。老生代常用的垃圾收集器有CMS、Serial Old、Parallel Old等

  • PC,PU: Perm(永生代)容量/用量。

  • YGC/YGCT: Young GC次数和总耗费时间。Young GC也就是Minor GC,新生代中内存不够时触发,通常采用复制算法进行,回收速度较快,对系统的影响较小。

  • FGC/FGCT:Full GC次数和总耗费时间。Full GC是在java heap空间不足(包括New和Old区域)时触发,会分别清理新生代、老生代,通常耗时较长,对系统有较大影响,应该尽量避免。

  • GCT:GC总耗时。

  •    常用的垃圾收集器包括下面几个

  • Serial:最基本,历史最悠久的收集器,单线程收集垃圾内存,在新生代采用复制算法,在老生代使用标记-整理算法

  • ParNew:Serial的多线程版本,主要用于新生代收集。与CMS收集器配合成为现在最常用的server收集器

  • Parallel Scavenge:也是一个并行收集器,使用与ParNew完全不同的收集策略,具体的差别还在研究中

  • CMS:Concurrent Mark Sweep收集器,大名鼎鼎,其目标是获取最短回收停顿时间,是server模式下最常用的收集器

  • G1:最新的收集器,木有用过啊

  •    下面将会用一段简单的程序演示jvm在配置使用不同的收集器情况下,GC行为的不同点,通过GC的行为能够了解到不同收集器的收集策略和行为。代码非常简单:

    //jvm basic args:-Xmx20M -Xms20M -Xmn10M -XX:+PrintGCDetails -XX:SurvivorRatio=8
    public class Main {
        public static void main(String[] args) throws Exception {
        byte[] alloc1,alloc2,alloc3,alloc4;
        alloc1 = new byte[2*1024*1024];
        Thread.sleep(2000);
        alloc2 = new byte[2*1024*1024];
        Thread.sleep(2000);
        alloc3 = new byte[2*1024*1024];
        Thread.sleep(2000);
        alloc4 = new byte[2*1024*1024];
        Thread.sleep(2000);
        }
    }

       其中上例中的jvm参数解释如下:

    Xmx最大堆容量,包含了新生代和老生代的堆容量
    Xms最小堆容量,此时配置与Xmx一样,避免了申请空间时的堆扩展
    Xmn新生代容量,包含eden,survivor1,survivor2三个区域
    PrintGCDetails让jvm在每次发生gc的时候打印日志,利于分析gc的原因和状况
    SurvivorRatio新生代中eden的比例,如果设置为8,意味着新生代中eden占据80%的空间,两个survivor分别占据10%

       测试环境为mac os 10.8,jdk版本如下:

    chendeMacBook-Air:~ eleforest$ java -version
    java version "1.7.0_09"
    Java(TM) SE Runtime Environment (build 1.7.0_09-b05)
    Java HotSpot(TM) 64-Bit Server VM (build 23.5-b02, mixed mode)
  • 示例1:让jvm自动选择收集器

  •    直接运行上述代码,用jstat观察gc情况如下:

    chendeMacBook-Air:~ eleforest$ jstat -gc 21729 1000
     S0C    S1C    S0U    S1U      EC       EU        OC         OU       PC     PU    YGC     YGCT    FGC    FGCT     GCT
    1024.0 1024.0  0.0    0.0    8192.0   819.9    10240.0      0.0     21248.0 2637.2      0    0.000   0      0.000    0.000
    1024.0 1024.0  0.0    0.0    8192.0   2867.9   10240.0      0.0     21248.0 2637.2      0    0.000   0      0.000    0.000
    1024.0 1024.0  0.0    0.0    8192.0   2867.9   10240.0      0.0     21248.0 2637.2      0    0.000   0      0.000    0.000
    1024.0 1024.0  0.0    0.0    8192.0   4915.9   10240.0      0.0     21248.0 2637.2      0    0.000   0      0.000    0.000
    1024.0 1024.0  0.0    0.0    8192.0   4915.9   10240.0      0.0     21248.0 2637.2      0    0.000   0      0.000    0.000
    1024.0 1024.0  0.0    0.0    8192.0   6963.9   10240.0      0.0     21248.0 2637.2      0    0.000   0      0.000    0.000
    1024.0 1024.0  0.0    0.0    8192.0   6963.9   10240.0      0.0     21248.0 2637.2      0    0.000   0      0.000    0.000
    1024.0 1024.0  0.0   292.9   8192.0   2375.9   10240.0     6144.0   21248.0 2640.3      1    0.007   0      0.000    0.007
    1024.0 1024.0  0.0   292.9   8192.0   2375.9   10240.0     6144.0   21248.0 2640.3      1    0.007   0      0.000    0.007

       由上述的结果可见,程序启动时,Eden使用了819.9K的空间(我现在还不知道819k是什么东西的开销),S1、S2、老生代均没有占用,永生代则使用了2.6MB空间,其中包含了包含被虚拟机加载的类、常量、静态变量等数据。

       随后连续三次申请了2MB的空间,这些数据都被放到了Eden区域,这就是jvm内存分配的第一个原则:对象优先在Eden分配,这个原则只在Eden空间足够,且申请的内存小于jvm参数PretenureSizeThreshold设置值时生效(根据采用的收集器不同,还会有很多不同情况)

       注意看第四次申请2MB空间,此时由于Eden空间无法容纳新的数组,因此发生了一次Minor GC,具体的GC log如下所示:

    [GC [DefNew: 6963K->292K(9216K), 0.0065350 secs] 6963K->6436K(19456K), 0.0065940 secs] [Times: user=0.01 sys=0.00, real=0.00 secs]
    Heap
     def new generation   total 9216K, used 2832K [0x0000000112230000, 0x0000000112c30000, 0x0000000112c30000)
      eden space 8192K,  31% used [0x0000000112230000, 0x00000001124aaf60, 0x0000000112a30000)
      from space 1024K,  28% used [0x0000000112b30000, 0x0000000112b793b0, 0x0000000112c30000)
      to   space 1024K,   0% used [0x0000000112a30000, 0x0000000112a30000, 0x0000000112b30000)
     tenured generation   total 10240K, used 6144K [0x0000000112c30000, 0x0000000113630000, 0x0000000113630000)
       the space 10240K,  60% used [0x0000000112c30000, 0x0000000113230030, 0x0000000113230200, 0x0000000113630000)
     compacting perm gen  total 21248K, used 2647K [0x0000000113630000, 0x0000000114af0000, 0x0000000118830000)
       the space 21248K,  12% used [0x0000000113630000, 0x00000001138c5ec0, 0x00000001138c6000, 0x0000000114af0000)
    No shared spaces configured.

       其中第一行中的"DefNew"代表使用的收集器是Serial收集器,这次Minor GC使用copy算法,做了下面几件事情:

  • 检索heap中的对象,将还能通过GC roots能够遍历到的对象copy到to区中

  • 如果需要copy的对象没法进入from区中,则将其晋升到老年代,本例中即发生了这种情况,3个2MB的数组全部晋升到老生代(OU:6144)

  • 清理eden和from中无用的垃圾

  • 互换from和to空间

  •    比较有意思的是,在我的机器上重新再跑一次示例程序,发生了不一致的gc行为:

    [GC [PSYoungGen: 6963K->384K(9216K)] 6963K->6528K(19456K), 0.0052500 secs] [Times: user=0.01 sys=0.00, real=0.01 secs]
    [Full GC [PSYoungGen: 384K->0K(9216K)] [ParOldGen: 6144K->6436K(10240K)] 6528K->6436K(19456K) [PSPermGen: 2637K->2635K(21248K)], 0.0157270 secs] [Times: user=0.04 sys=0.00, real=0.02 secs]
    HeapA
     PSYoungGen      total 9216K, used 2539K [0x00000001106d0000, 0x00000001110d0000, 0x00000001110d0000)
      eden space 8192K, 31% used [0x00000001106d0000,0x000000011094af60,0x0000000110ed0000)
      from space 1024K, 0% used [0x0000000110ed0000,0x0000000110ed0000,0x0000000110fd0000)
      to   space 1024K, 0% used [0x0000000110fd0000,0x0000000110fd0000,0x00000001110d0000)
     ParOldGen       total 10240K, used 6436K [0x000000010fcd0000, 0x00000001106d0000, 0x00000001106d0000)
      object space 10240K, 62% used [0x000000010fcd0000,0x0000000110319278,0x00000001106d0000)
     PSPermGen       total 21248K, used 2645K [0x000000010aad0000, 0x000000010bf90000, 0x000000010fcd0000)
      object space 21248K, 12% used [0x000000010aad0000,0x000000010ad65688,0x000000010bf90000)

       GC log第一行的PSYoungGen意味着这次运行中jvm自动选择了Parallel Scavenge收集器,GC行为发生了变化,同样的内存请求,PS收集器除了一次Minor GC以外,还发生了一次Full GC。PS收集器的实现与serial不一致,其行为模式还需要进一步研究.

       比较吊诡的是jvm的自动选择行为,我阅读了openjdk的源码,版本为:openjdk-7-fcs-src-b147-27_jun_2011

       其中关于jvm自动选择gc的代码如下:

    if (os::is_server_class_machine() && !force_client_mode ) {
      // If no other collector is requested explicitly,
      // let the VM select the collector based on
      // machine class and automatic selection policy.
      if (!UseSerialGC &&
          !UseConcMarkSweepGC &&
          !UseG1GC &&
          !UseParNewGC &&
          !DumpSharedSpaces &&
          FLAG_IS_DEFAULT(UseParallelGC)) {
        if (should_auto_select_low_pause_collector()) {//如果需要低时延收集器,选择cms
          FLAG_SET_ERGO(bool, UseConcMarkSweepGC, true);
        } else {//否则缺省使用ps收集器
          FLAG_SET_ERGO(bool, UseParallelGC, true);
        }
        no_shared_spaces();
      }
    }

       如上所示,jvm在没有明确设置gc时会采用parallel scavenge作为缺省收集器。因此我机器上jvm自动选择gc的行为还需要进一步研究。

  • 示例2:使用ParNew收集器

  •    调整jvm的参数,添加-XX:+UseParNewGC,告诉jvm选择使用ParNew收集器,此时执行的结果与示例1中使用serial收集器的行为完全一样。这里不再赘述

  • 示例3:使用CMS收集器

  •    调整jvm参数为:

    -Xmx20M -Xms20M -Xmn10M -XX:+PrintGCDetails -XX:SurvivorRatio=8 -XX:+UseConcMarkSweepGC</pre>
    此时启动示例程序,我们会看到如下的结果:
    <pre class="brush:shell">chendeMacBook-Air:~ eleforest$ jstat -gc 21729 1000
     S0C    S1C    S0U    S1U      EC       EU        OC         OU       PC     PU    YGC     YGCT    FGC    FGCT     GCT
    1024.0 1024.0  0.0    0.0    8192.0   820.2     8192.0      0.0     21248.0 2638.2      0    0.000   0      0.000    0.000
    1024.0 1024.0  0.0    0.0    8192.0   2868.2    8192.0      0.0     21248.0 2638.2      0    0.000   0      0.000    0.000
    1024.0 1024.0  0.0    0.0    8192.0   2868.2    8192.0      0.0     21248.0 2638.2      0    0.000   0      0.000    0.000
    1024.0 1024.0  0.0    0.0    8192.0   4916.3    8192.0      0.0     21248.0 2638.2      0    0.000   0      0.000    0.000
    1024.0 1024.0  0.0    0.0    8192.0   4916.3    8192.0      0.0     21248.0 2638.2      0    0.000   0      0.000    0.000
    1024.0 1024.0  0.0    0.0    8192.0   6964.3    8192.0      0.0     21248.0 2638.2      0    0.000   0      0.000    0.000
    1024.0 1024.0  0.0    0.0    8192.0   6964.3    8192.0      0.0     21248.0 2638.2      0    0.000   0      0.000    0.000
    1024.0 1024.0  0.0   320.1   8192.0   2375.9    8192.0     6146.1   21248.0 2641.2      1    0.009   2      0.001    0.010
    1024.0 1024.0  0.0   320.1   8192.0   2375.9    8192.0     6146.1   21248.0 2641.2      1    0.009   2      0.001    0.010
    1024.0 1024.0  0.0   320.1   8192.0   2375.9    8192.0     6146.1   21248.0 2641.2      1    0.009   4      0.002    0.011
    1024.0 1024.0  0.0   320.1   8192.0   2375.9    8192.0     6146.1   21248.0 2641.2      1    0.009   4      0.002    0.011
    1024.0 1024.0  0.0   320.1   8192.0   2375.9    8192.0     6146.1   21248.0 2641.2      1    0.009   6      0.003    0.012

       也就是说到第四个2MB申请,老生代里使用6MB的数据之后,jvm还进行了6次full gc,这是由于cms特殊性导致的:cms为了保证进行gc时应用的低时延,要求在老生代中剩余充足的空间以备应用使用。这个特性可以用下列参数进行调整和限制

    -XX:CMSInitiatingOccupancyFraction=80 -XX:+UseCMSInitiatingOccupancyOnly

       其中CMSInitiatingOccupancyFraction的缺省为68%。在我们的示例中,OU已经超过了这个限制,jvm试图去清理老生代,因此发生了多次full gc。

       通过修改CMSInitiatingOccupancyFraction为80或者更高值,再次执行示例程序后不会再发生fullGC。

       为了使应用平顺,CMS收集器的使用需要小心的调整堆空间的大小,太小的老生代可能会起到相反的效果,过高的CMSInitiatingOccupancyFraction也会导致回收数据时使应用无法正常工作。

       以上便是我在这篇博客中想要分享的内容,做一些记录,也分享出来。

       但是如分享中所说的,还有以下问题还没有搞清楚:

  • PS收集器的行为,触发full gc的条件

  • jvm自动选择收集器的策略

  • G1收集器的使用

建议继续学习:

  1. Java 6 JVM参数选项大全(中文版)    (阅读:3845)
  2. jvm垃圾回收    (阅读:2687)
  3. JVM垃圾收集器    (阅读:2718)
  4. JVM垃圾收集算法    (阅读:2621)
  5. JVM内存结构    (阅读:2630)
  6. JVM内存分配与回收策略    (阅读:2151)
QQ技术交流群:445447336,欢迎加入!
扫一扫订阅我的微信号:IT技术博客大学习
© 2009 - 2024 by blogread.cn 微博:@IT技术博客大学习

京ICP备15002552号-1