技术头条 - 一个快速在微博传播文章的方式     搜索本站
您现在的位置首页 --> 算法 --> 研发面试最常用的10大算法

研发面试最常用的10大算法

浏览:3003次  出处信息

面试也是一门学问,在面试之前做好充分的准备则是成功的必须条件,而程序员在代码面试时,常会遇到编写算法的相关问题,比如排序、二叉树遍历等等。

在程序员的职业生涯中,算法亦算是一门基础课程,尤其是在面试的时候,很多公司都会让程序员编写一些算法实例,例如快速排序、二叉树查找等等。

本文总结了程序员在代码面试中最常遇到的10大算法类型,想要真正了解这些算法的原理,还需程序员们花些功夫。

1.String/Array/Matrix

在Java中,String是一个包含char数组和其它字段、方法的类。如果没有IDE自动完成代码,下面这个方法大家应该记住:

toCharArray() //get char array of a String
Arrays.sort()  //sort an array
Arrays.toString(char[] a) //convert to string
charAt(int x) //get a char at the specific index
length() //string length
length //array size 
substring(int beginIndex) 
substring(int beginIndex, int endIndex)
Integer.valueOf()//string to integer
String.valueOf()/integer to string

String/arrays很容易理解,但与它们有关的问题常常需要高级的算法去解决,例如动态编程、递归等。

下面列出一些需要高级算法才能解决的经典问题:


2.链表

在Java中实现链表是非常简单的,每个节点都有一个值,然后把它链接到下一个节点。

class Node {
    int val;
    Node next;
 
    Node(int x) {
        val = x;
        next = null;
    }
}


比较流行的两个链表例子就是栈和队列。

栈(Stack)

class Stack{
    Node top; 
 
    public Node peek(){
        if(top != null){
            return top;
        }
 
        return null;
    }
 
    public Node pop(){
        if(top == null){
            return null;
        }else{
            Node temp = new Node(top.val);
            top = top.next;
            return temp;    
        }
    }
 
    public void push(Node n){
        if(n != null){
            n.next = top;
            top = n;
        }
    }
}

队列(Queue)

class Queue{
    Node first, last;
 
    public void enqueue(Node n){
        if(first == null){
            first = n;
            last = first;
        }else{
            last.next = n;
            last = n;
        }
    }
 
    public Node dequeue(){
        if(first == null){
            return null;
        }else{
            Node temp = new Node(first.val);
            first = first.next;
            return temp;
        }   
    }
}


值得一提的是,Java标准库中已经包含一个叫做Stack的类,链表也可以作为一个队列使用(add()和remove())。(链表实现队列接口)如果你在面试过程中,需要用到栈或队列解决问题时,你可以直接使用它们。

在实际中,需要用到链表的算法有:

3.树&堆

这里的树通常是指二叉树。

class TreeNode{
    int value;
    TreeNode left;
    TreeNode right;
} 

下面是一些与二叉树有关的概念:

  • 二叉树搜索:对于所有节点,顺序是:left children <= current node <= right children;

  • 平衡vs.非平衡:它是一 棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树;

  • 满二叉树:除最后一层无任何子节点外,每一层上的所有结点都有两个子结点;

  • 完美二叉树(Perfect Binary Tree):一个满二叉树,所有叶子都在同一个深度或同一级,并且每个父节点都有两个子节点;

  • 完全二叉树:若设二叉树的深度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,第 h 层所有的结点都连续集中在最左边,这就是完全二叉树。

堆(Heap)是一个基于树的数据结构,也可以称为优先队列( PriorityQueue),在队列中,调度程序反复提取队列中第一个作业并运行,因而实际情况中某些时间较短的任务将等待很长时间才能结束,或者某些不短小,但具有重要性的作业,同样应当具有优先权。堆即为解决此类问题设计的一种数据结构。

下面列出一些基于二叉树和堆的算法:

4.Graph


与Graph相关的问题主要集中在深度优先搜索和宽度优先搜索。深度优先搜索非常简单,你可以从根节点开始循环整个邻居节点。下面是一个非常简单的宽度优先搜索例子,核心是用队列去存储节点。

534655cfcf7a0[1]

第一步,定义一个GraphNode

class GraphNode{ 
    int val;
    GraphNode next;
    GraphNode[] neighbors;
    boolean visited;
 
    GraphNode(int x) {
        val = x;
    }
 
    GraphNode(int x, GraphNode[] n){
        val = x;
        neighbors = n;
    }
 
    public String toString(){
        return "value: "+ this.val; 
    }
}


第二步,定义一个队列

class Queue{
    GraphNode first, last;
 
    public void enqueue(GraphNode n){
        if(first == null){
            first = n;
            last = first;
        }else{
            last.next = n;
            last = n;
        }
    }
 
    public GraphNode dequeue(){
        if(first == null){
            return null;
        }else{
            GraphNode temp = new GraphNode(first.val, first.neighbors);
            first = first.next;
            return temp;
        }   
    }
}

第三步,使用队列进行宽度优先搜索

public class GraphTest {
 
    public static void main(String[] args) {
        GraphNode n1 = new GraphNode(1); 
        GraphNode n2 = new GraphNode(2); 
        GraphNode n3 = new GraphNode(3); 
        GraphNode n4 = new GraphNode(4); 
        GraphNode n5 = new GraphNode(5); 
 
        n1.neighbors = new GraphNode[]{n2,n3,n5};
        n2.neighbors = new GraphNode[]{n1,n4};
        n3.neighbors = new GraphNode[]{n1,n4,n5};
        n4.neighbors = new GraphNode[]{n2,n3,n5};
        n5.neighbors = new GraphNode[]{n1,n3,n4};
 
        breathFirstSearch(n1, 5);
    }
 
    public static void breathFirstSearch(GraphNode root, int x){
        if(root.val == x)
            System.out.println("find in root");
 
        Queue queue = new Queue();
        root.visited = true;
        queue.enqueue(root);
 
        while(queue.first != null){
            GraphNode c = (GraphNode) queue.dequeue();
            for(GraphNode n: c.neighbors){
 
                if(!n.visited){
                    System.out.print(n + " ");
                    n.visited = true;
                    if(n.val == x)
                        System.out.println("Find "+n);
                    queue.enqueue(n);
                }
            }
        }
    }
}

输出结果:

value: 2 value: 3 value: 5 Find value: 5
value: 4

实际中,基于Graph需要经常用到的算法:

5.排序

不同排序算法的时间复杂度,大家可以到wiki上查看它们的基本思想。

53465710a87e6[1]

BinSort、Radix Sort和CountSort使用了不同的假设,所有,它们不是一般的排序方法。

下面是这些算法的具体实例,另外,你还可以阅读: Java开发者在实际操作中是如何排序的

6.递归和迭代

下面通过一个例子来说明什么是递归。

问题:

这里有n个台阶,每次能爬1或2节,请问有多少种爬法?

步骤1:查找n和n-1之间的关系

为了获得n,这里有两种方法:一个是从第一节台阶到n-1或者从2到n-2。如果f(n)种爬法刚好是爬到n节,那么f(n)=f(n-1)+f(n-2)。

步骤2:确保开始条件是正确的

f(0) = 0;
f(1) = 1;

public static int f(int n){
    if(n <= 2) return n;
    int x = f(n-1) + f(n-2);
    return x;
}


递归方法的时间复杂度指数为n,这里会有很多冗余计算。

f(5)
f(4) + f(3)
f(3) + f(2) + f(2) + f(1)
f(2) + f(1) + f(2) + f(2) + f(1)

该递归可以很简单地转换为迭代。

public static int f(int n) {
 
    if (n <= 2){
        return n;
    }
 
    int first = 1, second = 2;
    int third = 0;
 
    for (int i = 3; i <= n; i++) {
        third = first + second;
        first = second;
        second = third;
    }
 
    return third;
}


在这个例子中,迭代花费的时间要少些。关于迭代和递归,你可以去 这里看看。

7.动态规划

动态规划主要用来解决如下技术问题:

  • 通过较小的子例来解决一个实例;

  • 对于一个较小的实例,可能需要许多个解决方案;

  • 把较小实例的解决方案存储在一个表中,一旦遇上,就很容易解决;

  • 附加空间用来节省时间。

上面所列的爬台阶问题完全符合这四个属性,因此,可以使用动态规划来解决:

public static int[] A = new int[100];
 
public static int f3(int n) {
    if (n <= 2)
        A[n]= n;
 
    if(A[n] > 0)
        return A[n];
    else
        A[n] = f3(n-1) + f3(n-2);//store results so only calculate once!
    return A[n];
}


一些基于动态规划的算法:

8.位操作

位操作符:

53465e7bc51e0[1]

从一个给定的数n中找位i(i从0开始,然后向右开始)

public static boolean getBit(int num, int i){
    int result = num & (1<<i);
 
    if(result == 0){
        return false;
    }else{
        return true;
    }
}


例如,获取10的第二位:

i=1, n=10
1<<1= 10
1010&10=10
10 is not 0, so return true;

典型的位算法:

9.概率

通常要解决概率相关问题,都需要很好地格式化问题,下面提供一个简单的例子:

有50个人在一个房间,那么有两个人是同一天生日的可能性有多大?(忽略闰年,即一年有365天)

算法:

public static double caculateProbability(int n){
    double x = 1; 
 
    for(int i=0; i<n; i++){
        x *=  (365.0-i)/365.0;
    }
 
    double pro = Math.round((1-x) * 100);
    return pro/100;
}

结果:

calculateProbability(50) = 0.97

10.组合和排列

组合和排列的主要差别在于顺序是否重要。

例1:

1、2、3、4、5这5个数字,输出不同的顺序,其中4不可以排在第三位,3和5不能相邻,请问有多少种组合?

例2:

有5个香蕉、4个梨、3个苹果,假设每种水果都是一样的,请问有多少种不同的组合?

基于它们的一些常见算法

来自:ProgramCreek

来源:http://www.csdn.net/article/2014-04-10/2819237-Top-10-Algorithms-for-Coding-Interview

建议继续学习:

  1. Java开发岗位面试题归类汇总    (阅读:18046)
  2. 为什么算法这么难?    (阅读:10737)
  3. 面试题 – 为什么我的朋友圈不见了?    (阅读:10464)
  4. 加州求职记    (阅读:9985)
  5. 整理了一份招PHP高级工程师的面试题    (阅读:9706)
  6. 海量数据面试题举例    (阅读:8887)
  7. 腾讯php程序员面试题目答案    (阅读:7421)
  8. 如何在面试中发现优秀程序员    (阅读:7136)
  9. 面试IT业界顶尖企业所应该知道的10道题(1)    (阅读:6847)
  10. 有道面试总结    (阅读:6355)
QQ技术交流群:445447336,欢迎加入!
扫一扫订阅我的微信号:IT技术博客大学习
© 2009 - 2024 by blogread.cn 微博:@IT技术博客大学习

京ICP备15002552号-1