您现在的位置:首页 --> 查看专题: 密度
在前面介绍的DBSCAN算法中,有两个初始参数Eps(邻域半径)和minPts(Eps邻域最小点数)需要手动设置,并且聚类的结果对这两个参数的取值非常敏感,不同的取值将产生不同的聚类结果。为了克服DBSCAN算法这一缺点,提出了OPTICS算法(Ordering Points to identify the clustering structure),翻译过来就是,对点排序以此来确定簇结构。
OPTICS是对DBSCAN的一个扩展算法。该算法可以让算法对半径Eps不再敏感。只要确定minPts的值,半径Eps的轻微变化,并不会影响聚类结果。OPTICS并不显示的产生结果类簇,而是为聚类分析生成一个增广的簇排序(比如,以可达距离为纵轴,样本点输出次序为横轴的坐标图),这个排序代表了各样本点基于密度的聚类结构。它包含的信息等价于从一个广泛的参数设置所获得的基于密度的聚类,换句话说,从这个排序中可以得到基于任何参数Eps和minPts的DBSCAN算法的聚类结果。
[ 共1篇文章 ][ 第1页/共1页 ][ 1 ]
近3天十大热文
- [72] Twitter/微博客的学习摘要
- [65] find命令的一点注意事项
- [63] IOS安全–浅谈关于IOS加固的几种方法
- [63] Go Reflect 性能
- [62] 如何拿下简短的域名
- [61] Oracle MTS模式下 进程地址与会话信
- [61] android 开发入门
- [60] 流程管理与用户研究
- [58] 【社会化设计】自我(self)部分――欢迎区
- [57] 读书笔记-壹百度:百度十年千倍的29条法则
赞助商广告