技术头条 - 一个快速在微博传播文章的方式     搜索本站
您现在的位置首页 --> 查看专题: 聚类
     需求:分析订单的价格分布 方案:按照100为梯度,分析不同价格区间的订单量 缺陷:现实生活中,定价存在一些自然的价格分隔,如果按照步距划分可能存在一些偏差。
     在前面介绍的DBSCAN算法中,有两个初始参数Eps(邻域半径)和minPts(Eps邻域最小点数)需要手动设置,并且聚类的结果对这两个参数的取值非常敏感,不同的取值将产生不同的聚类结果。为了克服DBSCAN算法这一缺点,提出了OPTICS算法(Ordering Points to identify the clustering structure),翻译过来就是,对点排序以此来确定簇结构。 OPTICS是对DBSCAN的一个扩展算法。该算法可以让算法对半径Eps不再敏感。只要确定minPts的值,半径Eps的轻微变化,并不会影响聚类结果。OPTICS并不显示的产生结果类簇,而是为聚类分析生成一个增广的簇排序(比如,以可达距离为纵轴,样本点输出次序为横轴的坐标图),这个排序代表了各样本点基于密度的聚类结构。它包含的信息等价于从一个广泛的参数设置所获得的基于密度的聚类,换句话说,从这个排序中可以得到基于任何参数Eps和minPts的DBSCAN算法的聚类结果。
    在K-Means算法中,最终的聚类效果受初始的聚类中心的影响,K-Means++算法的提出,为选择较好的初始聚类中心提供了依据,但是算法中,聚类的类别个数k仍需事先制定,对于类别个数事先未知的数据集,K-Means和K-Means++将很难对其精确求解,对此,有一些改进的算法被提出来处理聚类个数k未知的情形。Mean Shift算法,又被称为均值漂移算法,与K-Means算法一样,都是基于聚类中心的聚类算法,不同的是,Mean Shift算法不需要事先制定类别个数k。 Mean Shift的概念最早是由Fukunage在1975年提出的,在后来由Yizong Cheng对其进行扩充,主要提出了两点的改进:定义了核函数,增加了权重系数。核函数的定义使得偏移值对偏移向量的贡献随之样本与被偏移点的距离的不同而不同。权重系数使得不同样本的权重不同。 Mean Shift算法在很多领域都有成功应用,例如图像平滑、图像分割、物体跟踪等,这些属于人工智能里面模式识别或计算机视觉的部分;另外也包括常规的聚类应用。
    检索结果聚类,可以有效地反映出特定Query下,检索结果内容的分布,可以清晰地描述出结果中的各个类别,对Query结果的展示方式亦不再是传统1页若干条结果的流式输送,而是采用展现核心词或代表词的方式,简明扼要地从不同维度提示核心信息,免去用户重新构造Query再搜索或在大量检索结果中寻找、定位所需内容的过程。
[ 共4篇文章 ][ 第1页/共1页 ][ 1 ]
© 2009 - 2025 by blogread.cn 微博:@IT技术博客大学习

京ICP备15002552号-1