您现在的位置:首页 --> 查看专题: 语音
摘要体验过百度语音产品的你一定能感受到语音交互的魅力。在这里,我们以一个常用命令(打开、关闭、开始、停止)的语音识别任务为例,介绍一下如何利用HTK快速地建立这样一个语音命令识别系统,让电脑识别出你所说的简单命令。当然,如果要想识别任何其它的词,原理及过程也完全相同。 工具包介绍 HTK的全称是”Hidden Markov Model Toolkit”,是英国剑桥大学工程学院开发的隐马尔可夫模型(后面简称为隐马模型)工具包,可以方便有效的建立及操作隐马模型。隐马模型在许多人工智能领域都有着成功的应用,比如语音识别,当前国际上主流的语音识别系统仍是基于隐马模型建立的。HTK的开发也主要是针对语音识别的应用及研究。
语音是人们沟通交流最直接、最自然的交互方式。自计算机问世以来,人们就一直希望可以通过语音实现人和计算机之间的交互,而语音识别技术,目标就是通过把人类的语音中的词汇内容转换为相应的文本,架起了人机交互的桥梁。对于一个语音识别系统,速度和精度是两个核心指标,直接决定着系统是否可用。其中,识别速度的提升意味着可以降低成本,同时提供更多的语音服务,一直是语音识别技术研究的重点方向。在语音识别系统中,声学模型得分的运算量一般会达到整个系统的40%-70%,因此也是识别速度优化的重点模块。本文就来讲讲如何优化声学模型得分计算。 基本概念介绍特征向量:语音数据在识别前首先会被分成多帧数据,一般帧长为25毫秒,帧移为10毫秒。每一帧语音数据经过特征提取之后,会生成一帧特征,称之为一个特征向量或特征矢量 ,其中n为特征向量的维数。
语音识别技术,也被称为自动语音识别,其目标是将人类的语音中的词汇内容转换为计算机可读的输入,例如按键、二进制编码或者字符序列。 语音识别技术作为输入方式,比按键输入和手势输入更为快捷,学习成本很低,对于非特定人连续语音识别系统的识别率达到98.73%,已经达到实用要求,具有广阔的应用前景,在手机端的应用有语音拨号、语音输入、语音命令、语音搜索和语音翻译等。 语音的技术原理比较复杂,可以从语音交互的过程来理...
[ 共3篇文章 ][ 第1页/共1页 ][ 1 ]
近3天十大热文
- [70] Twitter/微博客的学习摘要
- [66] 如何拿下简短的域名
- [65] IOS安全–浅谈关于IOS加固的几种方法
- [64] find命令的一点注意事项
- [63] android 开发入门
- [63] Go Reflect 性能
- [61] 流程管理与用户研究
- [59] Oracle MTS模式下 进程地址与会话信
- [59] 图书馆的世界纪录
- [59] 读书笔记-壹百度:百度十年千倍的29条法则
赞助商广告