您现在的位置:首页 --> 查看专题: MapReduce
利用MapReduce利器作开发,不论从思想上还是技能上都是新的体验。以下罗列下如何利用eclipse调试MR任务。 (本人环境:hadoop 1.0.2,部署在linux上,本地windows开发) 1、安装hadoop。 先在linux上安装好hadoop,为更接近线上环进,我的是安装成Cluster 注意要远程访问相关端口,conf/mapred-site.xml中localhost:9001中需要换成ip加端口。 sh bin/start-all.sh启动,先按文档命令行跑一下example的wordcount。
传统的 MapReduce 如 Hadoop, 是以任务的形式进行的 — 获取一批数据, 提交给系统, 然后获取结果. 但是, 有一些统计的需求是即时的, 统计任务需要持续的运行, 一旦数据生成, 便立即发给统计任务处理, 生成的结果”推”给接收者. 以一个网站用户在线时长统计的需求为例子, 那么系统就有这几个部分: 数据接收接收 Web Server(如 Apache/Nginx) 的 log, 例如使用 syslog. Mapper(格式转换) 依次输入以行为单位的原始的 Apache log, 输出一条或者多条结构化的数据. 这个输出将出 Reducer 进行下一步处理. Reducer(统计器) 不同的精度用不同的统计器, 因为统计结果必须在要求的精度时间内进行输出. 例如当精度要求是小时, 用户连续在线1个小时, 并且横跨在2个自然小时上,......
本文是对《big data glossary》第三章MapReduce的个人翻译,无版权 在传统的关系数据库世界中,所有的处理都发生在信息被载入存储之后,使用特定的查询语言处理高度结构化和优化的数据结构。而由Google引领,然后被许多其他网络公司所接纳的替代方式是:创建一个读写任意格式文件的流水线,在每个阶段以文件的方式交换中间结果,并且跨机器分布计算。通常基于MapReduce方法进行分布式工作的方法都需要一套全新的工具,我将在下面介绍。 Hadoop 最初是由Yahoo!开发的一套Google MapReduce架构的克隆系统,但随后被开源。Hadoop帮助你的代码在跨机器的集群上运行。它负责对输入的数据分块,并发送到各自对应的机器,在每个分块上运行代码,监测运行的代码,将结果发送到下一步的处理阶段或者最终存储下来,执行发生在map和reduce阶段间的排序工作并将排序后的数据发送到
MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Reduce(化简)".简单来讲,就是给大量的输入的 key/value 的键值对 reduced 成少量的key/value 的键值对。
[ 共4篇文章 ][ 第1页/共1页 ][ 1 ]
近3天十大热文
- [43] IOS安全–浅谈关于IOS加固的几种方法
- [43] 如何拿下简短的域名
- [42] Oracle MTS模式下 进程地址与会话信
- [42] 图书馆的世界纪录
- [41] 界面设计速成
- [39] 【社会化设计】自我(self)部分――欢迎区
- [39] android 开发入门
- [37] 读书笔记-壹百度:百度十年千倍的29条法则
- [36] 视觉调整-设计师 vs. 逻辑
- [33] Go Reflect 性能
赞助商广告