您现在的位置:首页 --> 查看专题: shift
在K-Means算法中,最终的聚类效果受初始的聚类中心的影响,K-Means++算法的提出,为选择较好的初始聚类中心提供了依据,但是算法中,聚类的类别个数k仍需事先制定,对于类别个数事先未知的数据集,K-Means和K-Means++将很难对其精确求解,对此,有一些改进的算法被提出来处理聚类个数k未知的情形。Mean Shift算法,又被称为均值漂移算法,与K-Means算法一样,都是基于聚类中心的聚类算法,不同的是,Mean Shift算法不需要事先制定类别个数k。
Mean Shift的概念最早是由Fukunage在1975年提出的,在后来由Yizong Cheng对其进行扩充,主要提出了两点的改进:定义了核函数,增加了权重系数。核函数的定义使得偏移值对偏移向量的贡献随之样本与被偏移点的距离的不同而不同。权重系数使得不同样本的权重不同。
Mean Shift算法在很多领域都有成功应用,例如图像平滑、图像分割、物体跟踪等,这些属于人工智能里面模式识别或计算机视觉的部分;另外也包括常规的聚类应用。
[ 共1篇文章 ][ 第1页/共1页 ][ 1 ]
近3天十大热文
-
[84] memory prefetch浅析
-
[53] 基本排序算法的PHP实现
-
[51] 深入浅出cassandra 4 数据一致性问
-
[49] 转载:cassandra读写性能原理分析
-
[43] MySQL半同步存在的问题
-
[41] 字符引用和空白字符
-
[41] javascript插入样式
-
[40] Inline Form Labels
-
[39] JS中如何判断字符串类型的数字
-
[38] 获取Dom元素的X/Y坐标
赞助商广告