Hive 随谈(三)
浏览:1797次 出处信息
摘要:由于 Hive 采用了 SQL 的查询语言 HQL,因此很容易将 Hive 理解为数据库。其实
从结构上来看,Hive 和数据库除了拥有类似的查询语言,再无类似之处。本文将
从多个方面来阐述 Hive 和数据库的差异。数据库可以用在 Online 的应用中,但是
Hive 是为数据仓库而设计的,清楚这一点,有助于从应用角度理解 Hive 的特性。
查询语言 |
HQL |
SQL |
数据存储位置 |
HDFS | Raw Device 或者 Local FS |
数据格式 |
用户定义 | 系统决定 |
数据更新 |
支持 | 不支持 |
索引 |
无 | 有 |
执行 |
MapRedcue | Executor |
执行延迟 |
高 | 低 |
可扩展性 |
高 | 低 |
数据规模 |
大 | 小 |
- 查询语言。由于 SQL 被广泛的应用在数据仓库中,因此,专门针对 Hive 的特性设计了类 SQL 的查询语言 HQL。熟悉 SQL 开发的开发者可以很方便的使用 Hive 进行开发。
- 数据存储位置。Hive 是建立在 Hadoop 之上的,所有 Hive 的数据都是存储在 HDFS 中的。而数据库则可以将数据保存在块设备或者本地文件系统中。
- 数据格式。Hive 中没有定义专门的数据格式,数据格式可以由用户指定,用户定义数据格式需要指定三个属性:列分隔符(通常为空格、”\t”、”\x001″)、行分隔符(”\n”)以及读取文件数据的方法(Hive 中默认有三个文件格式 TextFile,SequenceFile 以及 RCFile)。由于在加载数据的过程中,不需要从用户数据格式到 Hive 定义的数据格式的转换,因此,Hive 在加载的过程中不会对数据本身进行任何修改,而只是将数据内容复制或者移动到相应的 HDFS 目录中。而在数据库中,不同的数据库有不同的存储引擎,定义了自己的数据格式。所有数据都会按照一定的组织存储,因此,数据库加载数据的过程会比较耗时。
- 数据更新。由于 Hive 是针对数据仓库应用设计的,而数据仓库的内容是读多写少的。因此,Hive 中不支持对数据的改写和添加,所有的数据都是在加载的时候中确定好的。而数据库中的数据通常是需要经常进行修改的,因此可以使用
INSERT INTO ... VALUES
添加数据,使用UPDATE ... SET
修改数据。 - 索引。之前已经说过,Hive 在加载数据的过程中不会对数据进行任何处理,甚至不会对数据进行扫描,因此也没有对数据中的某些 Key 建立索引。Hive 要访问数据中满足条件的特定值时,需要暴力扫描整个数据,因此访问延迟较高。由于 MapReduce 的引入, Hive 可以并行访问数据,因此即使没有索引,对于大数据量的访问,Hive 仍然可以体现出优势。数据库中,通常会针对一个或者几个列建立索引,因此对于少量的特定条件的数据的访问,数据库可以有很高的效率,较低的延迟。由于数据的访问延迟较高,决定了 Hive 不适合在线数据查询。
- 执行。Hive 中大多数查询的执行是通过 Hadoop 提供的 MapReduce 来实现的(类似 select * from tbl 的查询不需要 MapReduce)。而数据库通常有自己的执行引擎。
- 执行延迟。之前提到,Hive 在查询数据的时候,由于没有索引,需要扫描整个表,因此延迟较高。另外一个导致 Hive 执行延迟高的因素是 MapReduce 框架。由于 MapReduce 本身具有较高的延迟,因此在利用 MapReduce 执行 Hive 查询时,也会有较高的延迟。相对的,数据库的执行延迟较低。当然,这个低是有条件的,即数据规模较小,当数据规模大到超过数据库的处理能力的时候,Hive 的并行计算显然能体现出优势。
- 可扩展性。由于 Hive 是建立在 Hadoop 之上的,因此 Hive 的可扩展性是和 Hadoop 的可扩展性是一致的(世界上最大的 Hadoop 集群在 Yahoo!,2009年的规模在 4000 台节点左右)。而数据库由于 ACID 语义的严格限制,扩展行非常有限。目前最先进的并行数据库 Oracle 在理论上的扩展能力也只有 100 台左右。
- 数据规模。由于 Hive 建立在集群上并可以利用 MapReduce 进行并行计算,因此可以支持很大规模的数据;对应的,数据库可以支持的数据规模较小。
建议继续学习:
- 如何获取hive建表语句 (阅读:6701)
- Hive源码解析-之-词法分析器 parser (阅读:5859)
- HIVE中UDTF编写和使用 (阅读:5285)
- Hive的入口 -- Hive源码解析 (阅读:4849)
- Hive源码解析-之-语法解析器 (阅读:4345)
- 用hadoop hive协同scribe log用户行为分析方案 (阅读:4153)
- 几个HIVE的streaming (阅读:3423)
- 写好Hive 程序的五个提示 (阅读:3185)
- Impala与Hive的比较 (阅读:3014)
- Hive 随谈(一) (阅读:2861)
QQ技术交流群:445447336,欢迎加入!
扫一扫订阅我的微信号:IT技术博客大学习
扫一扫订阅我的微信号:IT技术博客大学习
<< 前一篇:Hive 随谈(二)
后一篇:Hive 随谈(四) >>
文章信息
- 作者:yuancai 来源: 淘宝数据平台团队
- 标签: Hive
- 发布时间:2010-08-19 09:16:04
建议继续学习
近3天十大热文
- [71] Twitter/微博客的学习摘要
- [65] find命令的一点注意事项
- [64] 如何拿下简短的域名
- [64] IOS安全–浅谈关于IOS加固的几种方法
- [62] Go Reflect 性能
- [62] android 开发入门
- [61] 流程管理与用户研究
- [60] Oracle MTS模式下 进程地址与会话信
- [59] 图书馆的世界纪录
- [58] 读书笔记-壹百度:百度十年千倍的29条法则