技术头条 - 一个快速在微博传播文章的方式     搜索本站
您现在的位置首页 --> MySQL --> 由浅入深理解索引的实现(2)

由浅入深理解索引的实现(2)

浏览:6511次  出处信息

如果要看“由浅入深理解索引的实现(1)”,请点这里

教科书上的B+Tree是一个简化了的,方便于研究和教学的B+Tree。然而在数据库实现时,为了
更好的性能或者降低实现的难度,都会在细节上进行一定的变化。下面以InnoDB为例,来说说
这些变化。

04 - Sparse Index中的数据指针

 在“由浅入深理解索引的实现(1)”中提到,Sparse Index中的每个键值都有一个指针指向
 所在的数据页。这样每个B+Tree都有指针指向数据页。如图Fig.1所示:

Fig.1

 如果数据页进行了拆分或合并操作,那么所有的B+Tree都需要修改相应的页指针。特别是
 Secondary B+Tree(辅助索引对应的B+Tree), 要对很多个不连续的页进行修改。同时也需要对
 这些页加锁,这会降低并发性。

 为了降低难度和增加更新(分裂和合并B+Tree节点)的性能,InnoDB 将 Secondary B+Tree中
 的指针替换成了主键的键值。如图Fig.2所示:

Fig.2

 这样就去除了Secondary B+Tree对数据页的依赖,而数据就变成了Clustered B+Tree(簇
 索引对应的B+Tree)独占的了。对数据页的拆分及合并操作,仅影响Clustered B+Tree. 因此
 InnoDB的数据文件中存储的实际上就是多个孤立B+Tree。

 一个有趣的问题,当用户显式的把主键定义到了二级索引中时,还需要额外的主键来做二级索引的
 数据吗(即存储2份主键)? 很显然是不需要的。InnoDB在创建二级索引的时候,会判断主键的字段
 是否已经被包含在了要创建的索引中。

 接下来看一下数据操作在B+Tree上的基本实现。

- 用主键查询

 直接在Clustered B+Tree上查询。

- 用辅助索引查询
 A. 在Secondary B+Tree上查询到主键。
 B. 用主键在Clustered B+Tree

可以看出,在使用主键值替换页指针后,辅助索引的查询效率降低了。
 A. 尽量使用主键来查询数据(索引遍历操作除外).
 B. 可以通过缓存来弥补性能,因此所有的键列,都应该尽量的小。

- INSERT
 A. 在Clustered B+Tree上插入数据
 B. 在所有其他Secondary B+Tree上插入主键。

- DELETE
 A. 在Clustered B+Tree上删除数据。
 B. 在所有其他Secondary B+Tree上删除主键。

- UPDATE 非键列
 A. 在Clustered B+Tree上更新数据。

- UPDATE 主键列
 A. 在Clustered B+Tree删除原有的记录(只是标记为DELETED,并不真正删除)。
 B. 在Clustered B+Tree插入新的记录。
 C. 在每一个Secondary B+Tree上删除原有的数据。(有疑问,看下一节。)
 D. 在每一个Secondary B+Tree上插入原有的数据。

- UPDATE 辅助索引的键值
 A. 在Clustered B+Tree上更新数据。
 B. 在每一个Secondary B+Tree上删除原有的主键。
 C. 在每一个Secondary B+Tree上插入原有的主键。

更新键列时,需要更新多个页,效率比较低。
 A. 尽量不用对主键列进行UPDATE操作。
 B. 更新很多时,尽量少建索引。

05 - 非唯一键索引

 教科书上的B+Tree操作,通常都假设”键值是唯一的“。但是在实际的应用中Secondary Index是允
 许键值重复的。在极端的情况下,所有的键值都一样,该如何来处理呢?
 InnoDB 的 Secondary B+Tree中,主键也是此键的一部分。
 Secondary Key = 用户定义的KEY + 主键。如图Fig.3所示:

Fig.3

 注意主键不仅做为数据出现在叶子节点,同时也作为键的一部分出现非叶子节点。对于非唯一键来说,
 因为主键是唯一的,Secondary Key也是唯一的。当然,在插入数据时,还是会根据用户定义的Key,
 来判断唯一性。按理说,如果辅助索引是唯一的(并且所有字段不能为空),就不需要这样做。可是,
 InnoDB对所有的Secondary B+Tree都这样创建。

还没弄明白有什么特殊的用途?有知道的朋友可以帮忙解答一下。
也许是为了降低代码的复杂性,这是我想到的唯一理由。
弄清楚了,即便是非空唯一键,在二级索引的B+Tree中也可能重复,因此必须要将主键加入到非叶子节点。

06 - <Key, Pointer>对

 标准的B+Tree的每个节点有K个键值和K+1个指针,指向K+1个子节点。如图Fig.4:

Fig.4(图片来自于WikiPedia)

 而在“由浅入深理解索引的实现(1)”中Fig.9的B+Tree上,每个节点有K个键值和K个指针。
 InnoDB的B+Tree也是如此。如图Fig.5所示:

Fig.5

 这样做的好处在于,键值和指针一一对应。我们可以将一个<Key,Pointer>对看作一条记录。
 这样就可以用数据块的存储格式来存储索引块。因为不需要为索引块定义单独的存储格式,就
 降低了实现的难度。

- 插入最小值

 当考虑在变形后的B+Tree上进行INSERT操作时,发现了一个有趣的问题。如果插入的数据的健
 值比B+Tree的最小键值小时,就无法定位到一个适当的数据块上去(<Key,Pointer>中的Key
 代表了子节点上的键值是>=Key的)。例如,在Fig.5的B+Tree中插入键值为0的数据时,无法
 定位到任何节点。

 在标准的B+Tree上,这样的键值会被定位到最左侧的节点上去。这个做法,对于Fig.5中的
 B+Tree也是合理的。Innodb的做法是,将每一层(叶子层除外)的最左侧节点的第一条记录标
 记为最小记录(MIN_REC).在进行定位操作时,任何键值都比标记为MIN_REC的键值大。因此0
 会被插入到最左侧的记录节点上。如Fig.6所示:

Fig.6

07 - 顺序插入数据

 Fig.7是B-Tree的插入和分裂过程,我们看看有没有什么问题?

Fig.7(图片来自于WikiPedia)

 标准的B-Tree分裂时,将一半的键值和数据移动到新的节点上去。原有节点和新节点都保留一半
 的空间,用于以后的插入操作。当按照键值的顺序插入数据时,左侧的节点不可能再有新的数据插入。
 因此,会浪费约一半的存储空间。

 解决这个问题的基本思路是:分裂顺序插入的B-Tree时,将原有的数据都保留在原有的节点上。
 创建一个新的节点,用来存储新的数据。顺序插入时的分裂过程如Fig.8所示:

Fig.8

 以上是以B-Tree为例,B+Tree的分裂过程类似。InnoDB的实现以这个思路为基础,不过要复杂
 一些。因为顺序插入是有方向性的,可能是从小到大,也可能是从大到小的插入数据。所以要区
 分不同的情况。如果要了解细节,可参考以下函数的代码。
   btr_page_split_and_insert();
   btr_page_get_split_rec_to_right();
   btr_page_get_split_rec_to_right();

InnoDB的代码太复杂了,有时候也不敢肯定自己的理解是对的。因此写了一个小脚本,来打印InnoDB数
据文件中B+Tree。这样可以直观的来观察B+Tree的结构,验证自己的理解是否正确。

建议继续学习:

  1. 由浅入深探究mysql索引结构原理、性能分析与优化    (阅读:15182)
  2. 浅谈MySQL索引背后的数据结构及算法    (阅读:9991)
  3. HBase二级索引与Join    (阅读:5872)
  4. 如何建立合适的索引?    (阅读:5497)
  5. InnODB和MyISAM索引统计集合    (阅读:5340)
  6. Innodb 表和索引结构    (阅读:4887)
  7. mysql查询中利用索引的机制    (阅读:4866)
  8. MySQL索引背后的数据结构及算法原理    (阅读:4509)
  9. 多维度分类排行榜应用:用位图索引    (阅读:4042)
  10. mysql索引浅析    (阅读:4160)
QQ技术交流群:445447336,欢迎加入!
扫一扫订阅我的微信号:IT技术博客大学习
© 2009 - 2025 by blogread.cn 微博:@IT技术博客大学习

京ICP备15002552号-1