技术头条 - 一个快速在微博传播文章的方式     搜索本站
您现在的位置首页 --> 算法 --> 浅析linux kernel network之socket创建

浅析linux kernel network之socket创建

浏览:5682次  出处信息

去年受@colyli指点,决定花些时间读一些linux kernel network部分的代码,准备把阅读代码的过程记录下来,也希望能有大牛前来指点,下面就先写一下创建socket对象的过程:

首先,创建socket需要执行socket系统调用:

int socket(int domain, int type, int protocol);

该系统调用有3个参数,在内核中由SYSCALL_DEFINE3定义,具体代码如下:

SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
{
 int retval;
 struct socket *sock;
 int flags;
 
 flags = type & ~SOCK_TYPE_MASK;
 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
  return -EINVAL;
 type &= SOCK_TYPE_MASK;
 
 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
  flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
 
 retval = sock_create(family, type, protocol, &sock);
 if (retval < 0)
  goto out;
 
 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
 if (retval < 0)
  goto out_release;
 
out:
 /* It may be already another descriptor 8) Not kernel problem. */
 return retval;
 
out_release:
 sock_release(sock);
 return retval;
}

上述代码中首先做了一个类型检查,type即我们所熟知的SOCK_STREAM,SOCK_DGRAM等sock_type枚举,其取值范围为1-10,均位于type字段的低八位,而SOCK_CLOEXEC 和SOCK_NONBLOCK为于高位,SOCK_TYPE_MASK宏的值为0xF,该检查的作用是检查除了基本的socket类型和SOCK_CLOEXEC和SOCK_NONBLOCK选项之外是否设置了其它选项,如果有,则返回INVLAID。

之后的检查我理解为是一个兼容性检查,如果设置了SOCK_NONBLOCK选项,则不管SOCK_NONBLOCK的值是否定义为与O_NONBLOCK相同,均将socket的O_NONBLOCK位置位,而将SOCK_NONBLOCK位复位。

随便调用sock_create创建一个新的socket对象,之后再调用sock_map_fd将该socket对象影射为文件描述符retval,随即将其返回,从而函数得到一个socket描述符。sock_create函数直接调用了__sock_create函数来创建socket对象,具体看__sock_create函数的实现:

int __sock_create(struct net *net, int family, int type, int protocol,
    struct socket **res, int kern)
{
 int err;
 struct socket *sock;
 const struct net_proto_family *pf;
 
 if (family < 0 || family >= NPROTO)
  return -EAFNOSUPPORT;
 if (type < 0 || type >= SOCK_MAX)
  return -EINVAL;
 
 if (family == PF_INET && type == SOCK_PACKET) {
  static int warned;
  if (!warned) {
   warned = 1;
   printk(KERN_INFO \"%s uses obsolete (PF_INET,SOCK_PACKET)\\n\",
          current->comm);
  }
  family = PF_PACKET;
 }
 
 err = security_socket_create(family, type, protocol, kern);
 if (err)
  return err;
 
 sock = sock_alloc();
 if (!sock) {
  if (net_ratelimit())
   printk(KERN_WARNING \"socket: no more sockets\\n\");
  return -ENFILE; /* Not exactly a match, but its the
       closest posix thing */
 }
 
 sock->type = type;
 
#ifdef CONFIG_MODULES
 if (net_families[family] == NULL)
  request_module(\"net-pf-%d\", family);
#endif
 
 rcu_read_lock();
 pf = rcu_dereference(net_families[family]);
 err = -EAFNOSUPPORT;
 if (!pf)
  goto out_release;
 
 /*
  * We will call the ->create function, that possibly is in a loadable
  * module, so we have to bump that loadable module refcnt first.
  */
 if (!try_module_get(pf->owner))
  goto out_release;
 
 /* Now protected by module ref count */
 rcu_read_unlock();
 
 err = pf->create(net, sock, protocol, kern);
 if (err < 0)
  goto out_module_put;
 
 /*
  * Now to bump the refcnt of the [loadable] module that owns this
  * socket at sock_release time we decrement its refcnt.
  */
 if (!try_module_get(sock->ops->owner))
  goto out_module_busy;
 
 /*
  * Now that we\'re done with the ->create function, the [loadable]
  * module can have its refcnt decremented
  */
 module_put(pf->owner);
 err = security_socket_post_create(sock, family, type, protocol, kern);
 if (err)
  goto out_sock_release;
 *res = sock;
 
 return 0;
 
out_module_busy:
 err = -EAFNOSUPPORT;
out_module_put:
 sock->ops = NULL;
 module_put(pf->owner);
out_sock_release:
 sock_release(sock);
 return err;
 
out_release:
 rcu_read_unlock();
 goto out_sock_release;
}

开始先进行安全性检查和兼容性检查,security_socket_create()是个空函数,可以忽略。之后调用sock_alloc()函数在VFS上分配一个struct socket对象,所有的协议类型创建socket时创建的均为这个对象,可以理解为是所有网络层socket的模板或者说父类,上层协议栈在初始化socket时会根据这个已创建好的struct socket对象创建并初始化一个struct sock对象,这个对象包含更多上层协议栈的详细信息。

接下来的net_families数据是一个全局变量,在系统初始化时在inet_init()函数内进行初始化,其定义如下:

static const struct net_proto_family *net_families[NPROTO] __read_mostly;

每个协议族都会在该数据中对应一个net_proto_family结构体,当然,未实现的协议族中对应位置的结构体指针为空,我们只关心最常用的协议族即AF_INET,其值为2,而NPROTO的值等于AF_MAX,在2.6.37内核中值为38。刚才提到该数组在inet_init()中被初始化,查看该函数相关代码可知它调用sock_register()函数注册INET协议族,代码如下:

(void)sock_register(&inet_family_ops);

其中inet_family_ops是一个全局静态变量,其定义如下:

static const struct net_proto_family inet_family_ops = {
 .family = PF_INET,
 .create = inet_create, /* 该函数在我们创建socket的过程中起着很关键的作用 */
 .owner = THIS_MODULE,
};

再继续查看sock_register()函数,其代码如下:

int sock_register(const struct net_proto_family *ops)
{
 int err;
 
 if (ops->family >= NPROTO) {
  printk(KERN_CRIT \"protocol %d >= NPROTO(%d)\\n\", ops->family,
         NPROTO);
  return -ENOBUFS;
 }
 
 spin_lock(&net_family_lock);
 if (net_families[ops->family])
  err = -EEXIST;
 else {
  net_families[ops->family] = ops;
  err = 0;
 }
 spin_unlock(&net_family_lock);
 
 printk(KERN_INFO \"NET: Registered protocol family %d\\n\", ops->family);
 return err;
}

代码很简单,即将net_proto_family对象插入到net_families数据对应的位置中,由此来完成对net_families的初始化。

OK,继续返回刚才的__sock_create()函数,看下面的代码:

#ifdef CONFIG_MODULES
 if (net_families[family] == NULL)
  request_module(\"net-pf-%d\", family);
#endif

如果编译时支持可安装模块,则首先检测net_families数组中对应的family是否存在,假设此处为AF_INET,如果不存在,即在系统初始化时没有通过sock_register()函数对该元素进行注册,则调用request_module()动态地安装模块net-pf-2。

再往下通过RCU机制获取net_families中对应的net_proto_family对象,RCU机制主要用于网络层和VFS中,关于RCU机制的更多细节可以参考@gnawux师兄的译文:What is RCU, Fundamentally?

之后由注释可知增加该模块的引用计数,重要的函数为pf->create(),当协议族为AF_INET时,由以上可知,create函数为inet_create(),由这个函数进一步创建该socket,我们再看inet_create()函数的实现:

static int inet_create(struct net *net, struct socket *sock, int protocol,
         int kern)
{
 struct sock *sk;
 struct inet_protosw *answer;
 struct inet_sock *inet;
 struct proto *answer_prot;
 unsigned char answer_flags;
 char answer_no_check;
 int try_loading_module = 0;
 int err;
 
        /* 检查是否有加密字符串,如果没有则查检socket类型,
           只有TCP需要加密字符串,如果协议类型不是SOCK_RAW和SOCK_DGRAM的话,
            调用build_ehash_secret()函数创建一个加密字符串 */
 if (unlikely(!inet_ehash_secret))
  if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM)
   build_ehash_secret();
 
        /* 将socket状态设置为未连接 */
 sock->state = SS_UNCONNECTED;
 
 /* Look for the requested type/protocol pair. */
lookup_protocol:
 err = -ESOCKTNOSUPPORT;
 rcu_read_lock();
 
        /* 遍历inetsw数组对应请求类型的链表元素,
           如果protocol不是通配符类型,即IPPROTO_IP,
           该宏的值为0,则在链表中搜索该协议类型,
           如未找到则返回协议类型不支持,如果是通配符类型,
           则选择一个适合的协议类型,至于inetsw数组,见下面分析 */
 list_for_each_entry_rcu(answer, &inetsw[sock->type], list) {
 
  err = 0;
  /* Check the non-wild match. */
  if (protocol == answer->protocol) {
   if (protocol != IPPROTO_IP)
    break;
  } else {
   /* Check for the two wild cases. */
   if (IPPROTO_IP == protocol) {
    protocol = answer->protocol;
    break;
   }
   if (IPPROTO_IP == answer->protocol)
    break;
  }
  err = -EPROTONOSUPPORT;
 }
        /* 动态加载相关协议模块 */
 if (unlikely(err)) {
  if (try_loading_module < 2) {
   rcu_read_unlock();
   /*
    * Be more specific, e.g. net-pf-2-proto-132-type-1
    * (net-pf-PF_INET-proto-IPPROTO_SCTP-type-SOCK_STREAM)
    */
   if (++try_loading_module == 1)
    request_module(\"net-pf-%d-proto-%d-type-%d\",
            PF_INET, protocol, sock->type);
   /*
    * Fall back to generic, e.g. net-pf-2-proto-132
    * (net-pf-PF_INET-proto-IPPROTO_SCTP)
    */
   else
    request_module(\"net-pf-%d-proto-%d\",
            PF_INET, protocol);
   goto lookup_protocol;
  } else
   goto out_rcu_unlock;
 }
 
 err = -EPERM;
        /* 众所周知,只有root权限用户才可以创始原始套接字,
           此处检查是否有权限创建SOCK_RAW类型的套接字,
           如果无权限,则返回-EPERM */
 if (sock->type == SOCK_RAW && !kern && !capable(CAP_NET_RAW))
  goto out_rcu_unlock; 
 err = -EAFNOSUPPORT;
       /* 检查协议类型是否支持 */
 if (!inet_netns_ok(net, protocol))
  goto out_rcu_unlock;
 
 sock->ops = answer->ops;
 answer_prot = answer->prot;
 answer_no_check = answer->no_check;
 answer_flags = answer->flags;
 rcu_read_unlock();
 
 WARN_ON(answer_prot->slab == NULL);
 
 err = -ENOBUFS;
 sk = sk_alloc(net, PF_INET, GFP_KERNEL, answer_prot);
 if (sk == NULL)
  goto out;
 
 err = 0;
 sk->sk_no_check = answer_no_check;
 if (INET_PROTOSW_REUSE & answer_flags)
  sk->sk_reuse = 1;
 
 inet = inet_sk(sk);
        /* 是否是基于连接的socket,目前只有SOCK_STREAM是基于连接的socket */
 inet->is_icsk = (INET_PROTOSW_ICSK & answer_flags) != 0;
 
 inet->nodefrag = 0;
 
 if (SOCK_RAW == sock->type) {
  inet->inet_num = protocol;
                /* 如果是原始套接字,则需要创建IP头部 */
  if (IPPROTO_RAW == protocol)
   inet->hdrincl = 1;
 }
 
        /* 是否启用路径MTU发现机制,可以在修改proc文件开启或关闭:
           /proc/sys/net/ipv4/ip_no_pmtu_disc */
 if (ipv4_config.no_pmtu_disc)
  inet->pmtudisc = IP_PMTUDISC_DONT;
 else
  inet->pmtudisc = IP_PMTUDISC_WANT;
 
 inet->inet_id = 0;
 
        /* 该函数利用sock的内容进一步初始化sk */
 sock_init_data(sock, sk);
 
 sk->sk_destruct    = inet_sock_destruct;
 sk->sk_protocol    = protocol;
 sk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
 
 inet->uc_ttl = -1;
 inet->mc_loop = 1;
 inet->mc_ttl = 1;
 inet->mc_all = 1;
 inet->mc_index = 0;
 inet->mc_list = NULL;
 
 sk_refcnt_debug_inc(sk);
 
 if (inet->inet_num) {
  /* It assumes that any protocol which allows
   * the user to assign a number at socket
   * creation time automatically
   * shares.
   */
  inet->inet_sport = htons(inet->inet_num);
  /* Add to protocol hash chains. */
  sk->sk_prot->hash(sk);
 }
 
 if (sk->sk_prot->init) {
  err = sk->sk_prot->init(sk);
  if (err)
   sk_common_release(sk);
 }
out:
 return err;
out_rcu_unlock:
 rcu_read_unlock();
 goto out;
}

说一下inetsw这个数组,它也是针对于AF_INET协议族而言的,是一个全局静态变量,包含着创建一个新的socket所需要的所有信息,定义如下:

static struct list_head inetsw[SOCK_MAX];

其中每个元素都是一个双向链表,该数据的定义也是在inet_init()函数中完成的,看其中相关代码:

for (r = &inetsw[0]; r < &inetsw[SOCK_MAX]; ++r)
 INIT_LIST_HEAD(r);
for (q = inetsw_array; q < &inetsw_array[INETSW_ARRAY_LEN]; ++q)
 inet_register_protosw(q);

首先初始化每个链表元素的头,接下来将inetsw_array这个数组中的元素使用inet_register_protosw()函数注册到inetsw数组中,inetsw_array也是一个全局的静态变量,其定义如下:

static struct inet_protosw inetsw_array[] =
{
 {
  .type =       SOCK_STREAM,
  .protocol =   IPPROTO_TCP,
  .prot =       &tcp_prot,
  .ops =        &inet_stream_ops,
  .no_check =   0,
  .flags =      INET_PROTOSW_PERMANENT |
         INET_PROTOSW_ICSK,
 },
 
 {
  .type =       SOCK_DGRAM,
  .protocol =   IPPROTO_UDP,
  .prot =       &udp_prot,
  .ops =        &inet_dgram_ops,
  .no_check =   UDP_CSUM_DEFAULT,
  .flags =      INET_PROTOSW_PERMANENT,
       },
 
 
       {
        .type =       SOCK_RAW,
        .protocol =   IPPROTO_IP, /* wild card */
        .prot =       &raw_prot,
        .ops =        &inet_sockraw_ops,
        .no_check =   UDP_CSUM_DEFAULT,
        .flags =      INET_PROTOSW_REUSE,
       }
};

它包含了各种协议类型所需要的基本信息。

接下来很重要的一步,就是调用sk_alloc()函数创建一个新的struct sock对象,struct socket和struct sock的区别在于,struct socket是创建每个BSD所必须的,它描述BSD socket的一些基本信息,而struct sock则描述网络层的相关信息,它在struct socket的基础上构建。看一下sk_sock()的定义:

struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
        struct proto *prot)
{
 struct sock *sk;
 
 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
 if (sk) {
  sk->sk_family = family;
  /*
   * See comment in struct sock definition to understand
   * why we need sk_prot_creator -acme
   */
  sk->sk_prot = sk->sk_prot_creator = prot;
  sock_lock_init(sk);
  sock_net_set(sk, get_net(net));
  atomic_set(&sk->sk_wmem_alloc, 1);
 
  sock_update_classid(sk);
 }
 
 return sk;
}

最后一个参数为当前协议类型对应的struct proto对象,将刚创建的struct sock对象的sk_prot和sk_prot_creator成员初始化为prot。sk_prot_alloc()函数用于创建sock对象,可以在slab分配器上创建,也可以在普通缓存中创建。

接下来贝sock_init_data()函数进一步初始化sk:

void sock_init_data(struct socket *sock, struct sock *sk)
{
        /* 初始化接收/发送/异常缓冲队列,这些队列均为双向链表,
           节点数据内容为struct sk_buff对象, 各种数据包的信息都
           存放在该结构体中。队列sk_error_queue很少使用 */
 skb_queue_head_init(&sk->sk_receive_queue);
 skb_queue_head_init(&sk->sk_write_queue);
 skb_queue_head_init(&sk->sk_error_queue);
#ifdef CONFIG_NET_DMA
 skb_queue_head_init(&sk->sk_async_wait_queue);
#endif
 
 sk->sk_send_head = NULL;
 
 init_timer(&sk->sk_timer);
 
 sk->sk_allocation = GFP_KERNEL;
        /* 接收缓冲区最大字节数 */
 sk->sk_rcvbuf  = sysctl_rmem_default;
        /* 发送缓冲区最大字节数 */
 sk->sk_sndbuf  = sysctl_wmem_default;
        /* 连接状态,SOCK_DGRAM和SOCK_RAW也会共用TCP的一些状态,
         连接刚建立的时候都会使用TCP_CLOSE状态 */
 sk->sk_state  = TCP_CLOSE;
 sk_set_socket(sk, sock);
 
 sock_set_flag(sk, SOCK_ZAPPED);
 
 if (sock) {
  sk->sk_type = sock->type;
  sk->sk_wq = sock->wq;
  sock->sk = sk;
 } else
  sk->sk_wq = NULL;
 
 spin_lock_init(&sk->sk_dst_lock);
 rwlock_init(&sk->sk_callback_lock);
 lockdep_set_class_and_name(&sk->sk_callback_lock,
   af_callback_keys + sk->sk_family,
   af_family_clock_key_strings[sk->sk_family]);
 
 sk->sk_state_change = sock_def_wakeup;
 sk->sk_data_ready = sock_def_readable;
 sk->sk_write_space = sock_def_write_space;
 sk->sk_error_report = sock_def_error_report;
 sk->sk_destruct  = sock_def_destruct;
 
 sk->sk_sndmsg_page = NULL;
 sk->sk_sndmsg_off = 0;
 
 sk->sk_peer_pid  = NULL;
 sk->sk_peer_cred = NULL;
 sk->sk_write_pending = 0;
 sk->sk_rcvlowat  = 1;
 sk->sk_rcvtimeo  = MAX_SCHEDULE_TIMEOUT;
 sk->sk_sndtimeo  = MAX_SCHEDULE_TIMEOUT;
 
 sk->sk_stamp = ktime_set(-1L, 0);
 
 /*
  * Before updating sk_refcnt, we must commit prior changes to memory
  * (Documentation/RCU/rculist_nulls.txt for details)
  */
 smp_wmb();
 atomic_set(&sk->sk_refcnt, 1);
 atomic_set(&sk->sk_drops, 0);
}

在inet_create()函数的最后还有一个很重要的初始化,下面这段代码:

if (sk->sk_prot->init) {
 err = sk->sk_prot->init(sk);
 if (err)
  sk_common_release(sk);
}

前面在sk_alloc()函数中为sk初始化时将协议类型对应的proto对象指针赋给了sk->sk_prot,这里的init()函数即对应的proto中的init函数,当协议类型为SOCK_STREAM时,prot即为tcp_proto(见inetsw_array), 对应的init()函数即为:

static int tcp_v4_init_sock(struct sock *sk)

建议继续学习:

  1. 推荐一些socket工具,TCP、UDP调试、抓包工具    (阅读:9415)
  2. 推荐一些socket工具,TCP、UDP调试、抓包工具    (阅读:7245)
  3. 用unix socket加速php-fpm、mysql、redis的连接    (阅读:6476)
  4. nginx、php-fpm默认配置与性能–TCP socket还是unix domain socket    (阅读:4981)
  5. web socket 心跳包的实现方案    (阅读:4912)
  6. python中的socket代理    (阅读:4800)
  7. netstat和web主机socket文件分析    (阅读:4421)
  8. 使用socket.io和node.js搭建websocket应用    (阅读:4351)
  9. php socket为什么这么慢,直到超时    (阅读:3841)
  10. php实现的thrift socket server    (阅读:3635)
QQ技术交流群:445447336,欢迎加入!
扫一扫订阅我的微信号:IT技术博客大学习
© 2009 - 2024 by blogread.cn 微博:@IT技术博客大学习

京ICP备15002552号-1