技术头条 - 一个快速在微博传播文章的方式     搜索本站
您现在的位置首页 --> 算法 --> URL相似度计算的思考

URL相似度计算的思考

浏览:3802次  出处信息

在做一些web相关的工作的时候,我们往往可能需要做一些对url的处理,其中包括对相似的url的识别和处理。这就需要计算两个url的相似度。

那么怎么进行url相似度的计算的?我首先想到的是把一个url看作是一个字符串,这样就简化成两个字符串相似度的计算。字符串相似度计算有很多已经比较成熟的算法,比如“编辑距离算法”,该算法描述了两个字符串之间转换需要的最小的编辑次数;还有一些其他的比如“最长公共字串”等方法。但这些方法对于url相似度的计算来说是不是够了呢?比如给以下三个url:

url1: www.spongeliu.com/xxx/123.html
url2: www.spongeliu.com/xxx/456.html
url3: www.spongeliu.com/xxx/abc.html

这三个url的编辑距离是一致的,但是直观上我们却认为url1和url2更加相似一些。

再比如我们要判断两个站点是否同一套建站模版建立的,抽出两个url如下这样:
url1: www.163.com/go/artical/43432.html
url2: www.sina.com.cn/go/artical/453109.html

这两个url按照情景应该是相似的,这就超出了字符串相似度判断的能力范围。

重新回到问题,要判断的是两个url的相似度,但是字符串的判断方法又不能很好应用。那么url和字符串的区别在哪里?这取决于如何定义相似的url。可以注意到,url比字符串含有更多的信息可以参考,因为url本身是包含结构和特征的,比如站点、目录。定义相似url的时候,是否要考虑站点?是否要考虑目录的一致?是否要考虑目录的深度?这取决于具体的需求。

考虑到url本身的结构,对其相似度的计算就可以抽象为对其关键特征相似度的计算。比如可以把站点抽象为一维特征,目录深度抽象为一维特征,一级目录、二级目录、尾部页面的名字也都可以抽象为一维特征。比如下面两个url:
url1:  http://www.spongeliu.com/go/happy/1234.html
url2:  http://www.spongeliu.com/snoopy/tree/abcd.html

先不定义他们是否相似,先来抽象一下他们的特征:

1、站点特征:如果两个url站点一样,则特征取值1,否则取值0;
2、目录深度特征:特征取值分别是两个url的目录深度是否一致;
3、一级目录特征:在这维特征的取值上,可以采用多种方法,比如如果一级目录名字相同则特征取1,否则取0;或者根据目录名字的编辑距离算出一个特征值;或者根据目录名字的pattern,如是否数字、是否字母、是否字母数字穿插等。这取决于具体需求,这里示例仅仅根据目录名是否相同取1和0;
4、尾页面特征:这维特征的取值同一级目录,可以判断后缀是否相同、是否数字页、是否机器生成的随机字符串或者根据编辑长度来取值,具体也依赖于需求。这里示例仅仅判断最后一级目录的特征是否一致(比如是否都由数字组成、是否都有字母组成等)。

这样,对于这两个url就获得了4个维度的特征,分别是:1 1 0 0 。

有了这两个特征组合,就可以根据具体需求判断是否相似了。我们定义一下每个特征的重要程度,给出一个公式:

similarity = feather1 * x1 + feather2*x2 + feather3*x3 + feather4*x4;

其中x表示对应特征的重要程度,比如我认为站点和目录都不重要,最后尾页面的特征才是最重要的,那么x1,x2,x3都可以取值为0,x4取值为1,这样根据similarity就能得出是否相似了。或者认为站点的重要性占10%,目录深度占50%,尾页面的特征占40%,那么系数分别取值为0.1\0.5\0\0.4即可。

其实这样找出需要的特征,可以把这个问题简化成一个机器学习的问题,只需要人为判断出一批url是否相似,用svm训练一下就可以达到机器判断的目的。

除了上面这种两个url相似度的判断,也可以将每一条url都抽象成一组特征,然后计算出一个url的得分,设置一个分数差的阈值,就可以达到从一大堆url中找出相似的url的目的

下面的代码是perl编写的抽象两个url特征的脚本,这只是一个测试的脚本,难免有bug和丑陋的地方,仅供参考:

#!/usr/bin/perl
use strict;
use warnings;
 
my $url1 = $ARGV[0];
my $url2 = $ARGV[1];
 
my @array1 = split( /\//, $url1 );
my @array2 = split( /\//, $url2 );
 
 
#特征1:目录数
my $path1 = @array1;
my $path2 = @array2;
 
#print $path1, $path2;
#特征2:是否目录结尾
my $lastispath1 = 0;
my $lastispath2 = 0;
 
if( $url1 =~ /\/$/ )
{
	$lastispath1 = 1;
}
if( $url1 =~ /\/$/ )
{
	$lastispath2 = 1;
}
#特征3:最后一级是否有后缀(htm,html,shtml等)
my $len;
my $hassuffix1 = 0;
my $hassuffix2 = 0;
my $suffixstr;
my $laststr1 = $array1[$path1 - 1];
my $laststr2 = $array2[$path2 - 1];
my $issuffixsame = 0;
 
if( $lastispath1 == 0 )
{
	my @suffix1 = split( /\./, $array1[$path1 - 1]);
	if( @suffix1 >= 2 )
	{
		$len = rindex( $suffix1[@suffix1 - 1]."\$", "\$");
		if( $len <= 5 )
		{
			$hassuffix1 = 1;
			$suffixstr = $suffix1[@suffix1 - 1];
			my $tmplen = rindex( $array1[@array1 - 1]."\$", "\$");
			$laststr1 = substr( $array1[@array1 - 1], 0, $tmplen-$len-1 );
		}
	}
}
if( $lastispath2 == 0 )
{
	my @suffix2 = split( /\./, $array2[$path2 - 1]);
	if( @suffix2 >= 2 )
	{
		$len = rindex( $suffix2[@suffix2 - 1]."\$", "\$");
		if( $len <= 5 )
		{
			$hassuffix2 = 1;
			if($suffixstr eq $suffix2[@suffix2 - 1])
			{
				$issuffixsame = 1;
			}
			my $tmplen = rindex( $array2[@array2 - 1]."\$", "\$");
			$laststr2 = substr( $array2[@array2 - 1], 0, $tmplen-$len-1 );
		}
	}
}
 
#特征3:最后一级几个分隔符(通过特征匹配计算laststr1和laststr2相似度,如果仅计算字符串相似度,可以用编辑长度)
my @area1 = split(/-/, $laststr1);
my @area2 = split(/-/, $laststr2);
my $i;
my $j;
my $totalarea1=0;
my $totalarea2=0;
my @patternarray1={0};
my @patternarray2={0};
my @splitarray1={0};
my @splitarray2={0};
#my $numarea1 = @area2;
 
#print $laststr1," ",$laststr2,"\n",$numarea1,"\n";
for ( $i = 1; $i<=@area1; $i++ )
{
	my @tmp1 = split( /_/, $area1[$i-1]);
 
	for( $j = 0; $j<@tmp1; $j++)
	{
		if( $tmp1[$j] =~ /^\d+$/ )	
		{
			$patternarray1[$totalarea1] = 1; #数字pattern
		}
		elsif( $tmp1[$j] =~ /^[a-zA-Z]+$/)
		{
			$patternarray1[$totalarea1] = 2; #纯字母pattern
		}
		elsif( $tmp1[$j] =~ /^[a-zA-Z]+[0-9]+$/)
		{
			$patternarray1[$totalarea1] = 3; #先字母后数字pattern
		}
		elsif( $tmp1[$j] =~ /^[0-9]+[a-zA-Z]+$/)
		{
			$patternarray1[$totalarea1] = 4; #先数字后字母pattern
		}
		else 
		{
			$patternarray1[$totalarea1] = 5; #其他pattern
		}
 
		if( $j == 0 )
		{
			$splitarray1[$totalarea1]=1;
		}
		else
		{
			$splitarray1[$totalarea1]=2;
		}
		$totalarea1 ++;
 
	}	
}
 
for ( $i = 1; $i<=@area2; $i++ )
{
	my @tmp2 = split( /_/, $area2[$i-1]);
	for( $j = 0; $j<@tmp2; $j++)
	{
		if( $tmp2[$j] =~ /^\d+$/ )	
		{
			$patternarray2[$totalarea2] = 1; #数字pattern
		}
		elsif( $tmp2[$j] =~ /^[a-zA-Z]+$/)
		{
			$patternarray2[$totalarea2] = 2; #纯字母pattern
		}
		elsif( $tmp2[$j] =~ /^[a-zA-Z]+[0-9]+$/)
		{
			$patternarray2[$totalarea2] = 3; #先字母后数字pattern
		}
		elsif( $tmp2[$j] =~ /^[0-9]+[a-zA-Z]+$/)
		{
			$patternarray2[$totalarea2] = 4; #先数字后字母pattern
		}
		else 
		{
			$patternarray2[$totalarea2] = 5; #其他pattern
		}
 
		if( $j == 0 )
		{
			$splitarray2[$totalarea2]=1;
		}
		else
		{
			$splitarray2[$totalarea2]=2;
		}
		$totalarea2 ++;
 
	}	
}
 
print $path1," ",$lastispath1," ",$hassuffix1," ",$issuffixsame," ",$totalarea1;
for( $i = 0; $i<$totalarea1; $i++)
{
	print " ",$splitarray1[$i]," ",$patternarray1[$i];
}
print "\n";
print $path2," ",$lastispath2," ",$hassuffix1," ",$issuffixsame," ",$totalarea2;
for( $i = 0; $i<$totalarea2; $i++)
{
	print " ",$splitarray2[$i]," ",$patternarray2[$i];
}
 
print "\n";
#print @array1;

建议继续学习:

  1. 相似度计算常用方法综述    (阅读:9482)
  2. 字符串匹配那些事(一)    (阅读:5872)
  3. 如何计算两个文档的相似度(一)    (阅读:4948)
  4. 如何计算两个文档的相似度(二)    (阅读:3951)
  5. Levenshtein distance相似度算法    (阅读:3229)
  6. 如何计算两个文档的相似度(三)    (阅读:3073)
  7. 若无云,岂有风——词语语义相似度计算简介    (阅读:2596)
  8. 相似度计算之兰氏距离    (阅读:2217)
  9. 相似度计算之马氏距离    (阅读:2049)
  10. 常见相似度计算方法回顾    (阅读:2098)
QQ技术交流群:445447336,欢迎加入!
扫一扫订阅我的微信号:IT技术博客大学习
© 2009 - 2025 by blogread.cn 微博:@IT技术博客大学习

京ICP备15002552号-1