技术头条 - 一个快速在微博传播文章的方式     搜索本站
您现在的位置首页 --> 算法 --> 用相同的面组成多面体,凸多面体不一定会更大

用相同的面组成多面体,凸多面体不一定会更大

浏览:1812次  出处信息

     有这么两个八面体,它们是由一组相同的三角形面组成的,不过一个是凸多面体,一个是凹多面体。这两个多面体的体积哪个更大?

     不可思议的是,真的就有这么两个八面体,凹的那个比凸的那个更大一些。 2002 年, S. N. Mikhalev 首次发现了这样一对八面体,其中凸多面体的六个顶点分别为

    N(0, 0, 1),A(10, 1, 0),B(0, 6, 0),C(-10, 1, 0),D(0, -10, 0),S(0, 0, -1)

     凹多面体的六个顶点则为

    N(0, 0, √61/3),A(√71, 4√2/3, 0),B(0, -5√2/3, 0),C(-√71, 4√2/3, 0),D(0, -11√2/3, 0),S(0, 0, -√61/3)

         感兴趣的读者可以自己验证一下,它们的对应棱确实都是一样长的,并且后者的体积确实比前者大。我用 Mathematica 画了一下,两个多面体大致是这样:

    

    

    来源:http://www.cut-the-knot.org/Curriculum/Geometry/Polyhedra/Mikhalev.shtml

建议继续学习:

  1. 能否在等边三角形点阵中画一个正方形?    (阅读:4179)
  2. 出租车几何学:一个全新的几何世界    (阅读:3349)
  3. 经典证明:等边三角形内一点到各顶点的距离长可构成一个三角形    (阅读:3168)
  4. 集数学与艺术于一体的几何幻方    (阅读:2410)
  5. 汉字的几何中心    (阅读:2380)
  6. css3中的几何图形shape研究    (阅读:990)
QQ技术交流群:445447336,欢迎加入!
扫一扫订阅我的微信号:IT技术博客大学习
© 2009 - 2024 by blogread.cn 微博:@IT技术博客大学习

京ICP备15002552号-1