技术头条 - 一个快速在微博传播文章的方式     搜索本站
您现在的位置首页 --> Matrix6
    Michael Brand 在 Using your Head is Permitted 趣题站 2014 年 4 月的谜题中提出了一个这样的问题:在最近非常流行的小游戏 2048 中,你能得到的最大的数是多少?
    Kyle McCormick 在 StackExchange 上发起了一个叫做 Tweetable Mathematical Art 的比赛,参赛者需要用三条推这么长的代码来生成一张图片。具体地说,参赛者需要用 C++ 语言编写 RD 、 GR 、 BL 三个函数,每个函数都不能超过 140 个字符。
    用 k × 1 的小矩形覆盖一个 n × n 的正方形棋盘,往往不能实现完全覆盖(比如,有时候 n × n 甚至根本就不是 k 的整倍数)。不过,在众多覆盖方案中,总有一种覆盖方案会让没有覆盖到的方格个数达到最少,我们就用 m(n, k) 来表示这个数目。求证:不管 n 和 k 是多少, m(n, k) 一定是一个完全平方数。  
    大家在吃饭喝酒时是否注意到了这样的事情:三个人碰杯时,每个人的杯子都能同时和其他两个人的杯子相接触,很完美;但是四个人碰杯时,任一时刻总会有两个人碰不到杯,非常尴尬。有一次和三个好朋友吃饭,四人碰杯时又发生了这种尴尬的情况,突然有一个人异想天开,把他的杯子放到了另外三个杯子的上面,从而实现了四个杯子两两接触!我们自然引出了这样一个问题:如果 n 个全等的圆柱体两两相接触,则 n 最大是多少?
    这是我最喜欢的几何谜题之一:你能否在纸上画一个钝角三角形,然后把它分割成若干个锐角三角形?令人难以置信的是,这竟然是可以办到的!继续看下去之前,大家不妨先自己想一会儿。
    设 p(z) 是一个复数域上的三次多项式, z1 、 z2 、 z3 是 p(z) 的三个根,它们在复平面上不共线。那么,在这个复平面上存在唯一的椭圆,使得它与三角形 z1z2z3 的各边都相切,并且都切于各边的中点处。并且,这个椭圆的两个焦点是 p'(z) 的两根。
        请你把一个圆形的比萨分成若干个大小形状都相同的部分,使得其中至少有一部分不含有比萨的边儿。换句话说,你需要把一个圆分成若干个全等的部分,其中至少有一个部分不包含任何一段圆周。
    在早期的小型图像编辑软件中,考虑到时间空间的限制,再加上算法本身的难度,很多看似非常简单的功能都无法实现。比如说,很多图像编辑软件只允许用户把所选的内容旋转 90 度、 180 度或者 270 度,不支持任意度数的旋转。毕竟,如果我们只是旋转 90 度的整数倍,那么所有像素仅仅是在做某些有规律的轮换,这甚至不需要额外的内存空间就能完成。但是,如果旋转别的度数,那么在采样和反锯齿等方面都将会有不小的挑战。
        通信复杂度(communication complexity)主要研究这么一类问题: A 持有数据 x , B 持有数据 y ,他们想要合作计算某个关于 x 和 y 的二元函数值 f(x, y) ,那么在渐近意义下,两人至少需要传输多少 bit 的数据。最近着迷于通信复杂度,看到了几个与通信复杂度有关的问题,和大家分享一下。
    证明:对于任意一个三角形和任意一个大于等于 4 的正整数 n ,都存在一种把这个三角形分割成 n 个等腰三角形的方案。这个问题曾经出现在 1976 年的 Crux Mathematicorum 上。 1977 年, Gali Salvatore 给出了一个非常漂亮的解答。
    你或许熟知一个非常经典的结论: Fibonacci 数列 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, … (头两项都是 1 ,此后每一项都是前两项之和)的相邻两项之比将会越来越接近黄金比例 0.618 。。。。
    在著名奇书 Gödel, Escher, Bach: An Eternal Golden Braid 的第五章中,为了展现出递推序列的神奇之处,作者 Douglas Hofstadter 定义了这么一个递推序列: G(n) = n - G(G(n - 1)) ,其中 G(1) = 1 。这个数列通常被称作 Hofstadter G-sequence 。它有什么特别的地方呢?
    如果你喜欢空间想象能力挑战,你一定会喜欢 V. V. Prasolov 的 Intuitive Topology 一书。书中的第一章有五个非常经典的“拓扑变换”类谜题,在此与大家分享。注意游戏规则:我们假设所有物体都是用橡胶做成的,可以随意地拉伸、挤压、弯曲,但不允许切断、粘连等任何改变图形本质结构的操作。
    数论,数学中的皇冠,最纯粹的数学。早在古希腊时代,人们就开始痴迷地研究数字,沉浸于这个几乎没有任何实用价值的思维游戏中。直到计算机诞生之后,几千年来的数论研究成果突然有了实际的应用,这个过程可以说是最为激动人心的数学话题之一。
    有 1000 枚硬币堆在一起。把它们任意分成两堆,并计算出这两堆的硬币数的乘积。然后,任意选择其中的一堆硬币,把它继续分成两个更小的堆,并计算出这两堆的硬币数的乘积。不断这样做下去,直到最后每堆都只剩一枚硬币为止。求证:把途中产生的所有乘积全部加在一起,结果是一个定值,它不随分法的改变而改变。                                       这是一个非常经典的问题。让我们把 1000 枚硬币换成 n 枚硬币,这样的话问题反而会更容易一些。如果初始时有 n 枚硬币,把它们分到底后,产生的所有乘积之和是多少呢?
    挖掘新词的传统方法是,先对文本进行分词,然后猜测未能成功匹配的剩余片段就是新词。这似乎陷入了一个怪圈:分词的准确性本身就依赖于词库的完整性,如果词库中根本没有新词,我们又怎么能信任分词结果呢?此时,一种大胆的想法是,首先不依赖于任何已有的词库,仅仅根据词的共同特征,将一段大规模语料中可能成词的文本片段全部提取出来,不管它是新词还是旧词。然后,再把所有抽出来的词和已有词库进行比较,不就能找出新词了吗?有了抽词算法后,我们还能以词为单位做更多有趣的数据挖掘工作。这里,我所选用的语料是人人网 2011 年 12 月前半个月部分用户的状态。非常感谢人人网提供这份极具价值的网络语料。
        有一道非常经典的智力问题:假设有两个一模一样的硬币 A 和硬币 B ,如果让硬币 B 不动,让硬币 A 贴着硬币 B 旋转一周,那么硬币 A 自身旋转了多少周?一个常见的错误答案是“显然也是一周啊”,而实际上正确的答案是两周,如下图所示。我们有很多方法来解释这种现象,其中最传统的说法便是“公转了一周,自转了一周”。硬币 A 的运动是由两部分合成的,公转一周(想像一个人绕着地球走了一圈),以及自转一周(想像一个轮子在地面上滚动了一周)。想像你是站在硬币 B 中心处的一个小人儿,看着硬币 A 贴着你脚下的硬币转动一圈。如果在此过程中,你始终面向硬币 A ,那么在你看来,硬币 A 似乎就是在长为 2πr 的平地上滚了一圈。而实际上,在观察硬币 A 的过程中,你自己也原地转了 360 度,因此从外面的人开来,硬币实际上转了两周。
        考虑一个传统的猜数游戏。 A 、 B 两名玩家事先约定一个正整数 N ,然后 A 在心里想一个不超过 N 的正整数 x , B 则需要通过向 A 提问来猜出 A 心里想的数。 B 的问题只有唯一的格式:先列出一些数,然后问 A “x 是否在这些数里”, A 则需要如实回答“是”或者“否”。显然, B 是保证能猜到 x 的,只需要依次询问“x 是否等于 1 ”,“x 是否等于 2 ”即可。由于 B 可以精心选出满足某种特征的所有数,询问 x 是否在这些数里,因而 B 还可以做得更好。例如当 N = 16 时, B 第一次可以问“x 是否小于等于 8 ”,或者等价地,“x 是否属于 {1, 2, 3, [...]
    从同事那里借来了一本单墫教授主编的《初等数论》奥数书,看到很多精彩的问题,在这里做个笔记,与大家一同分享。不少问题和答案都有过重新叙述,个别问题有所改动。   问题:找出所有使得 2n - 1 能被 7 整除的正整数 n 。答案:由于 2n 的二进制表达为 1000…00 (n 个 0),因此 2n - 1 的二进制表达为 111…11 (n 个 1)。而 7 的二进制表达是 111 ,要想让它整除 n 个 1 ,显然 n 必须是也只能是 3 的倍数。 问题:是否存在 100 个数,使得它们的和等于它们的最小公倍数?答案...
        一个无理数的无理数次方是否有可能是一个有理数?这是一个非常经典的老问题了。答案是肯定的,证明方法非常巧妙:考虑根号 2 的根号 2 次方。如果这个数是有理数,问题就已经解决了。如果这个数是无理数,那么就有:            我们同样会得到一个无理数的无理数次方是有理数的例子。     这是一个典型的非构造性证明的例子:我们证明了无理数的无理数次方有可能等于有理数,但却并没有给出一个确凿的例子。毕竟我们也不知道,真实情况究竟是上述推理中的哪一种。那么,真实情况究竟是上述推理中的哪一种呢?
[ 共91篇文章 ][ 第1页/共5页 ][ 1 ][ 2 ][ 3 ][ 4 ][ 5 ]
© 2009 - 2024 by blogread.cn 微博:@IT技术博客大学习

京ICP备15002552号-1