趣题:构造多边形使得过边界上某一点的任意直线均能等分面积
浏览:1568次 出处信息
这是 2008 年莫斯科数学竞赛中的一个问题。构造一个多边形,使得这个多边形的边界上存在这样的一个点 O :经过点 O 的任意直线均会把该多边形分成面积相等的两份。这看起来不大可能对吧?但其实构造却并不困难。你能想出来吗?
首先,在平面直角坐标系的第一象限内,沿着坐标轴放置一个等腰直角三角形。在第二象限内,拼接一个面积相等的等腰梯形。在第三象限和第四象限内,继续摆放面积相等的等腰梯形,并且让它们离原点越来越远,以保证最终所得的图形确实是一个多边形(而不是一块环形区域)。现在,把平面直角坐标系的原点记作点 O ,则过点 O 的任意一条直线都将把整个多边形分成面积相等的两份。
为了验证这一点,我们举一个例子。如上图,过点 O 作一条过一三象限的直线。容易看出,三角形 OAB 的面积占了三角形 OPB 面积的几分之几,三角形 OCD 的面积就占了三角形 OQD 面积的几分之几,同样地三角形 OEF 的面积就占了三角形 ORF 面积的几分之几,从而梯形 CDFE 的面积就是梯形 QDFR 的几分之几。由于三角形 OPB 的面积等于梯形 QDFR 的面积,因此三角形 OAB 的面积也就总是等于梯形 CDFE 的面积。自然,三角形 OAP 的面积也等于梯形 QCER 的面积了。而第二象限和第四象限的图形面积也是相等的,因此这条直线两侧的面积相等。过点 O 作其他方向上的直线,两侧的面积也相等,道理也一样。
建议继续学习:
QQ技术交流群:445447336,欢迎加入!
扫一扫订阅我的微信号:IT技术博客大学习
扫一扫订阅我的微信号:IT技术博客大学习
<< 前一篇:Huffman 编码压缩算法
后一篇:经典证明:几乎所有有理数都是无理数的无理数次方 >>
文章信息
- 作者:Matrix67 来源: Matrix67: My Blog
- 标签: 多边形 面积
- 发布时间:2012-06-05 00:03:17
建议继续学习
近3天十大热文
- [70] Twitter/微博客的学习摘要
- [66] 如何拿下简短的域名
- [65] IOS安全–浅谈关于IOS加固的几种方法
- [64] find命令的一点注意事项
- [63] android 开发入门
- [63] Go Reflect 性能
- [61] 流程管理与用户研究
- [59] 图书馆的世界纪录
- [59] 读书笔记-壹百度:百度十年千倍的29条法则
- [59] Oracle MTS模式下 进程地址与会话信