您现在的位置:首页
--> Matrix6
在下面的问题中,你不能使用圆规,只能使用直尺作图。不过,你的直尺拥有两条平行边,你可以在作图时同时使用它们。你需要充分利用直尺的这个特点,完成下面几个作图任务。 1. 作出已知角的角平分线; 2. 作出已知线段的中点; 3. 作出已知圆的圆心; ...
许多快递公司都依据物件的长、宽、高三边之和来收费,一些航空公司也要求托运行李的三边长相加不能超过某个限制。那么是否有人想过,有没有可能把一个三边之和较大的盒子装进一个三边之和较小的盒子里,从而骗取更低的费用呢?有人会说,恐怕不行吧,长宽高之和更大的盒子体积不也应该更大一些吗?不见得。比方说,盒子 A 的长宽高分别是 ...
一个小学奥数老师给我讲了一道小学奥数题,这是他在上课时遇到的:从 1 到 4000 中,各位数字之和能被 4 整除的有多少个? 注意,问题可能没有你想的那么简单,满足要求的数分布得并没有那么规则。 1 、 2 、 3 、 4 里有一个满足要求的数, 5 、 6 、 7 、 8 里也有一个满足要求的数,但是 9 、 10 、 11 、 12 里就没有了。 尽管如此,这个问题仍然有...
这个并不是标题党。很多年以前,要想进入莫斯科国立大学的数学系,你必须通过四项入学考试;头两个都是数学考试,一个笔试,一个面试。在面试中,学生和考官都是一对一的,考官可以自由向学生提出任何他喜欢的问题。考官们都准备了很多“棺材问题”,这些问题的答案非常简单,但由于思路太巧妙了,以至于学生很难想到。考官便可以以“你连这个都没想到”为理由,光明正大地拒绝学校不想要的人(主要是犹太...
网友 @ipondering 分享了一个非常精彩的数学趣题集,里面有很多我之前从没见过的趣题,其中有些问题的题目和解答都相当漂亮。近段时间里,我打算从中选一些最精彩的题目来讲讲。今天的题目是该趣题集中的第二题,原题背景涉及到 King Arthur 和 Merlin 的故事,我就舍去简化了。
数学之美不但体现在漂亮的结论和精妙的证明上,那些尚未解决的数学问题也有让人神魂颠倒的魅力。和 Goldbach 猜想、 Riemann 假设不同,有些悬而未解的问题趣味性很强,“数学性”非常弱,乍看上去并没有触及深刻的数学理论,似乎是一道可以被瞬间秒杀的数学趣题,让数学爱好者们“不找到一个巧解就不爽”;但令人称奇的是,它们的困难程度却不亚于那些著名的数学猜想,这或许比各个领域中艰深的数学难题...
今天听说了 Conway\'s Soldiers ,这是 Conway 大牛在 1961 年提出的一个数学谜题(似乎 Conway 的出镜率也太高了),我觉得非常有意思,在这里跟大家介绍一下。内容基本上来自于 Wikipedia 的相关页面。 假设有一个无限大的棋盘。棋盘上可以放置一些象征着士兵的棋子。一个棋子可以跳过并吃掉和它相邻的一枚棋子(就像孔明棋一样)。这是棋子的唯一一种移动方式。现在,在某个位...
这次的趣题来源于 UyHiP 今年八月份的谜题:概率均等地随机选取一个恰好含有 n 个 0 和 n 个 1 的 2n 位 01 串,这个 01 串平均会有多少个 0 和 1 个数相等的前缀(包括空串和整个串本身)? 为了叙述简便起见,下面我们把所含 0 和 1 个数恰好相等的 01 串叫做平衡的 01 串。例如, 010010110011 就是一个平衡 01 串,它有四个平衡前缀,空串、 01 、01001011 以及整个 01 串本...
很早以前,我简单介绍过 Julia 集和 Mandelbrot 集,文章在此。这可以说是数学中最神秘、最令人敬畏的研究对象之一。不过,那时我对这个话题了解还不太深。今天见到这个网页,让我对 Julia 集和 Mandelbrot 集有了更深的了解。我查阅了一些其他的资料,然后写下这篇长文,与大家一同分享。继续阅读以前,建议先看看我原来那篇文章(很短),那里面有很多漂亮的 Julia 集和 Mandelbrot 集的图片,这篇文章...
A Midsummer Knot’s Dream 简直可以说是去年学术界的一篇奇文,大家点进去看看就知道了。论文里讲了一个基于纽结理论的双人对弈游戏,名字也非常有艺术感: To Knot or Not to Knot 。这个游戏可能是最难的组合游戏了,它的数学性极强,思考难度非常大,甚至比 ERGO 更不容易上手。一场游戏下来,究竟谁赢谁输可能都不好判断。 To Knot or Not to Knot 的游戏规则非常简单。用铅...
当 1848 年国际象棋玩家 Max Bezzel 提出八皇后问题(eight queens puzzle)时,他恐怕怎么也想不到,100 多年以后,这个问题竟然成为了编程学习中最重要的必修课之一。八皇后问题听上去非常简单:把八个皇后放在国际象棋棋盘上,使得这八个皇后互相之间不攻击(国际象棋棋盘是一个 8×8 的方阵,皇后则可以朝横竖斜八个方向中的任意一个方向走任意多步)。虽然这个问题一共有 92 个解,但要想徒手找出一...
有这么两个八面体,它们是由一组相同的三角形面组成的,不过一个是凸多面体,一个是凹多面体。这两个多面体的体积哪个更大? 不可思议的是,真的就有这么两个八面体,凹的那个比凸的那个更大一些。
公式 h = (1/2)・g・t^2 里, t 头上的平方并不奇怪。显然,物体下落的路程是与重力加速度 g 和时间 t 有关的,高度 h 就由这两个变量决定。注意到 g 是一个加速度单位,是米除以平方秒的形式;为了得出一个以长度为单位的结果,我们必须要消除分母位置上的“平方秒”,因而时间变量 t 必须要以平方的形式出现。 类似地, E = m・c^2 里的平方也不是凭空而来的。能量的单位是牛乘...
今天碰上一个非常有意思的问题。有一条通信线路,每次可以发送一个由数字 0 到 9 组成的任意长的数字串。怎样巧妙地利用这条通信线路,构造一种一次能够发送两个数字串的协议?注意到,直接将两个数字串相连是不行的,因为这将会产生歧义。如果对方收到的数字串是 1234 ,他没法知道你发送的是数字串 12 和 34 ,还是数字串 123 和 4 ,抑或是 1 和 234。 能否把第一个串的位数编...
今天又学到一种证明素数无穷多的方法。它是由 Filip Saidak 发现的,论文曾发表在 2006 年的 The American Mathematical Monthly 上。 首先注意到,两个相邻自然数一定是互质的(否则,假设他们有大于 1 的公因数 k ,则他们的差也能被 k 整除,这显然是不可能的)。现在,取一个自然数 n > 1 。由于 n 和 n + 1 是相邻自然数,因此 n 和 n + 1 是互质的。也就是说,n 的质因数和...
在一篇老日志中,我提到了一个经典的概率问题:平均需要抛掷多少次硬币,才会首次出现连续两个正面?它的答案是 6 次。它的计算方法大致如下。 首先,让我们来考虑这样一个问题: k 枚硬币摆成一排,其中每一枚硬币都可正可反;如果里面没有相邻的正面,则一共有多少种可能的情况?这可以用递推的思想来解决。不妨用 f(k) 来表示摆放 k 枚硬币的方案数。我们可以把这些方案分成两...
这是初中平面几何的一个经典问题:等边三角形 ABC 内有任意一点 P,求证 PA 、 PB 、 PC 的长度一定能构成一个三角形。 这里给出两种证明方法。传统的证明方法是,把 △CPA 绕着点 C 逆时针旋转 60 度,从而...
这道题的答案有几个字母?答案:four。 有趣的是,这是唯一的答案。如果令函数 f(n) 表示正整数 n 的英文表达中有多少个字母, n=4 是该函数的唯一不动点。
这是一个非常有趣的问题:能否在一个无限大的等边三角形点阵中选取四个点,使得这四个点恰好构成一个正方形?这个问题有一个非常简单巧妙的解法,你能想到吗? 答案:不行。为了证明这一点,首先注意到,如果...
下面这个精彩的问题来自于刚刚结束的 IMO 2011 中的第 2 题: 设 S 是平面上包含至少两个点的一个有限点集,其中没有三点在同一条直线上。所谓一个“风车”是指这样一个过程:从经过 S 中单独一点 P 的一条直线 l 开始,以 P 为旋转中心顺时针旋转,直至首次遇到 S 中的另一点,记为点 Q 。接着这条直线以 Q 为新的旋转中心顺时针旋转,直到再次遇到 S 中的某一点,这样的过程无...
近3天十大热文
- [4612] 最常见的电话号码
- [365] QR码分析
- [62] 如何拿下简短的域名
- [57] Go Reflect 性能
- [56] Twitter/微博客的学习摘要
- [56] Oracle MTS模式下 进程地址与会话信
- [54] android 开发入门
- [54] 图书馆的世界纪录
- [53] IOS安全–浅谈关于IOS加固的几种方法
- [50] 流程管理与用户研究
赞助商广告